Structural Calculations

For

Brown Residence

Valley County, Idaho

Prepared by

1102 N FRANKLIN NAMPA, IDAHO 83687
(208) 475-0040 Fax (208) 498-4241

PERFORMANCE

Project Name:
Job Number: Location:

Governing Code:

Design Criteria

Brown Residence
2019-07235
Valley County, Idaho
2015 IBC

Snow Criteria

Roof Load $\left(\mathrm{P}_{\mathrm{f}}\right)$	150 psf
Ground Load $\left(\mathrm{P}_{\mathrm{g}}\right)$	150 psf
Exposure Factor $\left(\mathrm{C}_{\mathrm{e}}\right)$	1.0
Partially	
Thermal Factor $\left(\mathrm{C}_{\mathrm{t}}\right)$	1.0
Typortance $\left(\mathrm{I}_{\mathrm{s}}\right)$	1.0

Seismic Criteria

Site Class	D	Stiff Soil	
S_{s}	0.51	Fa	1.39
S_{1}	0.15	Fv	2.19
S_{DS}	0.47	$\mathrm{S}_{\mathrm{D} 1}$	0.22
Risk Category	11	Other	
Seismic Importance (I_{E})	1.0		
Seismic Design Category (SDC)	D		

Live Loads

Typ Residential | 40 psf |
:---:
-

Roof Dead Loads:

Deck	1.5
Insulation	2.0
Roofing	3.0
Joist	2.5
Ceiling	3.0
Misc	4.5
TOTAL	17 psf

Exterior Wall Dead Loads:

Engineer: ARA
Checker: KJ

Wind Criteria

Wind Speed $\left(V_{3}\right)$	115 mph
Wind Exposure	B
	Urban / wooded
Wind Importance $\left(\mathrm{I}_{\mathrm{w}}\right)$	1.0
Building Category	II

Wall Material	Design Base Shear	Seismic Response Coefficient , R
OSB	.07Wp	6.5
GYP	.24Wp	2

Soil Bearing

Typical 1500 psf

Floor Dead Loads:

Deck	2.0
Joist	2.0
Ceiling	0.0
Flooring	1.0
Misc	5.0
TOTAL	0 psf

Interior Wall Dead Loads:

Project: Brown Residence
OSB Seismic Loading Analysis

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{s}}=0.507 \\
& \mathrm{~S}_{1}=0.152 \\
& \mathrm{~F}_{\mathrm{a}}=1.4 \\
& \mathrm{~F}_{\mathrm{v}}=2.2 \\
& \mathrm{R}=6.5 \\
& \mathrm{I}_{\mathrm{E}}=1.0 \\
& \mathrm{~S}_{\mathrm{MS}}=\mathrm{F}_{\mathrm{a}} \mathrm{~S}_{\mathrm{s}}=0.7068 \\
& S_{M 1}=F_{V} S_{1}=0.3332 \\
& \mathrm{~S}_{\mathrm{DS}}=2 / 3 \mathrm{~S}_{\mathrm{MS}}=0.4712 \\
& \mathrm{~S}_{\mathrm{D} 1}=2 / 3 \mathrm{~S}_{\mathrm{M} 1}=0.2221 \\
& C_{s}=1.2 * S_{D S} /\left(R / I_{E}\right)=0.0725 \\
& \mathrm{~T}_{\mathrm{a}}=\mathrm{C}_{\mathrm{T}} \mathrm{~h}_{\mathrm{n}}{ }^{3 / 4}=0.2358 \\
& \mathrm{C}_{\mathrm{s}}<\mathrm{S}_{\mathrm{D} 1} /\left[\left(R / I_{\mathrm{E}}\right) \mathrm{T}\right]=0.1449 \\
& \mathrm{C}_{\mathrm{S}}>0.044 \mathrm{~S}_{\mathrm{DS}} \mathrm{I}_{\mathrm{E}}=0.0207 \\
& C_{s}>0.5 \mathrm{~S}_{1} /\left(\mathrm{R} / \mathrm{I}_{\mathrm{E}}\right)=0.0117 \\
& \mathrm{~V}=\mathrm{C}_{\mathrm{s}} \mathrm{~W}=0.0725 \mathrm{~W} \\
& 0.7^{*} \mathrm{~V}=0.0507 \mathrm{~W} \\
& \text { Seismic Design Category } \\
& \text { C } \\
& \text { D } \\
& \text { Controls }
\end{aligned}
$$

PERFORMANCE

Project: Brown Residence

OSB Seismic Component Loading

$\mathrm{w}_{\mathrm{p}}=$	psf	weight of element	Portion of seismic shear load at the level of the diaphragm, required to be transferred to the components of the vertical seismic-force-resisting system beacause of the offsets or changes in the stiffness of the vertical
$V_{p x}=$	0	plf	components above of below the diaphragm.
$w_{w}=$	1	psf	weight of wall
$L_{b}=$	66	ft	length of the building

NOTE: Use 1 for unit weight to achieve an answer per element unit weight

Connections

$$
\begin{array}{ccc}
\mathrm{F}_{\mathrm{p}}=0.133 \mathrm{~S}_{\mathrm{DS}} \mathrm{w}_{\mathrm{p}}= & \mathbf{0 . 0 6} & \mathrm{psf} \\
\text { or } \\
\mathrm{F}_{\mathrm{p}}=0.05 \mathrm{w}_{\mathrm{p}}= & \mathbf{0 . 0 5} & \mathrm{psf}
\end{array}
$$

Diaphragm

$$
\begin{array}{rlll}
F_{p} & =0.2 I_{E} S_{D S} w_{p}+V_{p x}= & \mathbf{0 . 0 9} & \mathrm{psf} \\
F_{p, \max } & =0.4 I_{\mathrm{E}} S_{D S} w_{p}+V_{p x}= & \mathbf{0 . 1 9} & \mathrm{psf}
\end{array}
$$

Bearing Walls \& Shear Walls

Out of Plane Forces

$$
\begin{array}{llll}
\mathrm{F}_{\mathrm{p}}=0.40 \mathrm{I}_{\mathrm{E}} \mathrm{~S}_{\mathrm{DS}} \mathrm{w}_{\mathrm{w}}= & \mathbf{0 . 1 9} & \mathrm{psf} & \text { Controls } \\
\mathrm{F}_{\mathrm{p}}=0.10 \mathrm{w}_{\mathrm{w}}= & \mathbf{0 . 1 0} & \mathrm{psf} &
\end{array}
$$

$$
12.11 .1
$$

Anchorage

$$
\begin{array}{lclll}
\mathrm{F}_{\mathrm{p}}=0.40 \mathrm{I}_{\mathrm{E}} \mathrm{~S}_{\mathrm{DS}} \mathrm{w}_{\mathrm{w}} \mathrm{k}_{\mathrm{a}}= & 0.3 & \mathrm{psf} & & \text { 12.11-1 } \\
\mathrm{F}_{\mathrm{p}}=0.2 \mathrm{I}_{\mathrm{E}} \mathrm{k}_{\mathrm{a}} \mathrm{w}_{\mathrm{w}}= & 0.3320 & \mathrm{psf} & \text { Controls } & \\
\mathrm{k}_{\mathrm{a}}=1.0+\mathrm{L}_{\mathrm{b}} / 100= & 1.6600 & & & 12.11-2
\end{array}
$$

Note: 12.11.2.2.2 The strength design forces for steel elements of the structural wall anchorage system, with exception of anchor bolts and reinforcing steel, shall be increased by 1.4 times the forces otherwise noted above.

MWFRS Wind Load for Load Case A				MWFRS Wind Load for Load Case B			
Surface	GCpf	p = Net Pressures (psf)		Surface	*GCpf	p = Net Pressures (psf)	
		(w/ +GCpi)	(w/ -GCpi)			(w/ +GCpi)	(w/ -GCpi)
Zone 1	0.55	7.45	14.71	Zone 1	0.40	4.44	11.69
Zone 2	-0.10	-5.63	1.63	Zone 2	-0.69	-17.54	-10.28
Zone 3	-0.45	-12.64	-5.39	Zone 3	-0.37	-11.09	-3.83
Zone 4	-0.39	-11.50	-4.25	Zone 4	-0.29	-9.48	-2.22
Zone 5	---	---	---	Zone 5	-0.45	-12.70	-5.44
Zone 6	---	---	---	Zone 6	-0.45	-12.70	-5.44
Zone 1E	0.73	11.04	18.30	Zone 1E	0.61	8.67	15.93
Zone 2E	-0.19	-7.47	-0.21	Zone 2E	-1.07	-25.20	-17.94
Zone 3E	-0.58	-15.42	-8.16	Zone 3E	-0.53	-14.31	-7.06
Zone 4E	-0.53	-14.41	-7.16	Zone 4E	-0.43	-12.30	-5.04
Zone 5E	---	---	---	Zone 5E	0.61	8.67	15.93
Zone 6E	---	---	---	Zone 6E	-0.43	-12.30	-5.04

*Note: Use roof angle $\theta=0$ degrees for Longitudinal Direction.
For Case A when GCpf is neg. in Zones 2/2E:
For Case B when GCpf is neg. in Zones 2/2E:
Zones 2/2E dist. $=16.00 \mathrm{ft}$. Zones 2/2E dist. $=33.00 \mathrm{ft}$.
Remainder of roof Zones $2 / 2 \mathrm{E}$ extending to ridge line shall use roof Zones $3 / 3 \mathrm{E}$ pressure coefficients.
MWFRS Wind Load for Load Case A, Torsional Case \quad MWFRS Wind Load for Case B, Torsional Case

Surface	GCpf	$\mathrm{p} \mathrm{=} \mathrm{Net} \mathrm{Pressure} \mathrm{(psf)}$		Surface	GCpf	$\mathrm{p}=$ Net Pressure (psf)	
			$(\mathrm{w} /+\mathrm{GCpi})$				$(\mathrm{w} /+\mathrm{GCpi})$
$(\mathrm{w} /-\mathrm{GCpi})$							
Zone 1T	---	1.86	3.68	Zone 1T	---	1.11	2.92
Zone 2T	---	-1.41	0.41	Zone 2T	---	-4.39	-2.57
Zone 3T	---	-3.16	-1.35	Zone 3T	---	-2.77	-0.96
Zone 4T	---	-2.88	-1.06	Zone 4T	---	-2.37	-0.55
Zone 5T	---	---	---	Zone 5T	---	-3.18	-1.36
Zone 6T	---	---	---	Zone 6T	---	-3.18	-1.36

Notes: 1. For Load Case A (Transverse), Load Case B (Longitudinal), and Torsional Cases:
Zone 1 is windward wall for interior zone. Zone 1E is windward wall for end zone.
Zone 2 is windward roof for interior zone. Zone 2E is windward roof for end zone.
Zone 3 is leeward roof for interior zone.
Zone 4 is leeward wall for interior zone.
Zones 5 and 6 are sidewalls.
Zone 1 T is windward wall for torsional case
Zone 3E is leeward roof for end zone.
Zone 4E is leeward wall for end zone.
Zone 5E \& 6E is sidewalls for end zone.
Zone $2 T$ is windward roof for torsional case.
Zone 3T is leeward roof for torsional case Zone 4T is leeward wall for torsional case.
Zones 5T and 6T are sidewalls for torsional case.
2. $(+)$ and $(-)$ signs signify wind pressures acting toward \& away from respective surfaces.
3. Building must be designed for all wind directions using the 8 load cases shown below. The load cases are applied to each building corner in turn as the reference corner.
4. Wind loads for torsional cases are 25% of respective transverse or longitudinal zone load values.

Torsional loading shall apply to all 8 basic load cases applied at each reference corner. Exception: One-story buildings with "h" <= 30', buildings $<=2$ stories framed with light frame construction, and buildings <=2 stories designed with flexible diaphragms need not be designed for torsional load cases.
5. Per Code Section 28.4.4, the minimum wind load for MWFRS shall not be less than 16 psf.

WIND LOADING ANALYSIS - Wall Components and Cladding
Per ASCE 7-10 Code for Buildings of Any Height
Using Part 1 \& 3: Analytical Procedure (Section 30.4 \& 30.6)

Job Name:	Brown Residence	Location:	Valley County, Idaho		
Job Number:	$2019-07235$	Engineer:	ARA	Checker:	KJ

Input Data:

Resulting Parameters and Coefficients:

$$
\begin{aligned}
\text { Roof Angle, } \theta & =\begin{array}{ll}
26.57 & \mathrm{deg} . \\
\text { Mean Roof Ht., } \mathrm{h} & =22.83 \mathrm{ft.}(\mathrm{~h}=(\mathrm{hr}+\mathrm{he}) / 2 \text {, for roof angle }>10 \mathrm{deg} .)
\end{array}
\end{aligned}
$$

Wall External Pressure Coefficients, GCp:

GCp Zone 4 Pos. $=$	0.92
GCp Zone 5 Pos. $=$	(Fig. 30.4-1)
GCp Zone 4 Neg. $=$	-1.02
(Fig. 30.4-1)	
(Fig. 30.4-1)	

Positive \& Negative Internal Pressure Coefficients, GCpi (Figure 26.11-1):

+ GCpi Coef. $=$	0.18	(positive internal pressure)
-GCpi Coef.	$=-0.18$	(negative internal pressure)

If $z<=15$ then: $K z=2.01^{*}(15 / z g)^{\wedge}(2 / \alpha)$, If $z>15$ then: $K z=2.01^{*}(z / z g)^{\wedge}(2 / \alpha)$ (Table 30.3-1)

$\alpha=$	7.00	(Table 26.9-1)	(Note: z not < 30' for Exp. B, Case 1)
$\mathrm{zg}=$	1200	(Table 26.9-1)	
Kh =	0.70	(Kh = Kz evalu	= h)

Velocity Pressure: $q z=0.00256^{*} K z^{*} K z t^{*} K d^{*} V^{\wedge} 2$ (Sect. 30.3.2, Eq. 30.3-1)

$$
\mathrm{qh}=20.16 \mathrm{psf} \quad \mathrm{qh}=0.00256^{*} \mathrm{Kh}^{*} \mathrm{Kzt}^{*} \mathrm{Kd}^{*} V^{\wedge} 2(\mathrm{qz} \text { evaluated at } \mathrm{z}=\mathrm{h})
$$

Design Net External Wind Pressures (Sect. 30.4 \& 30.6):
For $\mathrm{h}<=60 \mathrm{ft}$: $\mathrm{p}=\mathrm{qh}^{*}((\mathrm{GCp})-(+/-\mathrm{GCpi}))$ (psf)
For $h>60$ ft.: $\mathrm{p}=\mathrm{q}^{*}(\mathrm{GCp})-\mathrm{qi}^{*}(+/-\mathrm{GCpi})(\mathrm{psf})$
where: $q=q z$ for windward walls, $q=q h$ for leeward walls and side walls
qi $=$ qh for all walls (conservatively assumed per Sect. 30.6)

Wall Components and Cladding:

Wall Zones for Buildings with $\mathrm{h}<=\mathbf{6 0} \mathrm{ft}$.

Wall Zones for Buildings with $\mathrm{h}>60 \mathrm{ft}$.

WIND LOADING ANALYSIS - Roof Components and Cladding

Per ASCE 7-10 Code for BIdgs. of Any Height with Gable Roof $\theta<=45^{`}$ or Monoslope Roof $\theta<=3^{3}$ Using Part 1 \& 3: Analytical Procedure (Section 30.4 \& 30.6)

Job Name:	Brown Residence		Location:
Job Number:	2019-07235		Engineer:
Input Data:			
Wind Speed, V $=115 \mathrm{mph}$ (Wind Map, Figure 26.5-1A-C)			
Bldg. Classification $=$	II	(Table	ategory)
Exposure Category =	B	(Sect.	
Ridge Height, hr =	26.83	ft. (hr	
Eave Height, he =	18.83	ft. (he	
Building Width =	32	ft. (No	dge)
Building Length $=$	66	ft. (Pa	dge)
Roof Type =	Gable	(Gable	
Topo. Factor, Kzt =	1	(Sect.	-1)
Direct. Factor, Kd =	0.85	(Table	
Enclosed? (Y/N)	Y	(Sect.	6.11-1)
Hurricane Region?	N		
Component Name $=$	Joist	(Purlin	Fastener)
Effective Area, $\mathrm{Ae}=$	341.3333	ft.^2	\&C)
Overhangs? (Y/N)	Y	(if use	sides)

Resulting Parameters and Coefficients:

Roof Angle, θ	$=$26.57 deg. Mean Roof Ht., h $=22.83 \mathrm{ft} .(\mathrm{h}=(\mathrm{hr}+\mathrm{he}) / 2$, for roof angle $>10 \mathrm{deg})$.

Roof External Pressure Coefficients, GCp:

GCp Zone 1-3 Pos. $=$	0.30	
(Fig. 30.4-2A, 30.4-2B, and 30.4-2C)		
GCp Zone 1 Neg. $=$	-0.80	
(Fig. 30.4-2A, 30.4-2B, and 30.4-2C)		
GCp Zone 2 Neg. $=$	-2.20	
GCp Zone 3 Neg. $=$	-2.50	
(Fig. 30.4-2A, 30.4-2B, and 30.4-2C)		
(Fig. 30.4-2A, 30.4-2B, and 30.4-2C)		

Positive \& Negative Internal Pressure Coefficients, GCpi (Figure 26.11-1):

+ GCpi Coef. $=0.18$ (positive internal pressure)
-GCpi Coef. $=-0.18$ (negative internal pressure)
If $z<=15$ then: $\mathrm{Kz}=2.01^{*}(15 / \mathrm{zg})^{\wedge}(2 / \alpha)$, If $z>15$ then: $\mathrm{Kz}=2.01^{*}(\mathrm{z} / \mathrm{zg})^{\wedge}(2 / \alpha)$ (Table 30.3-1)

$\alpha=$	7.00	(Table 26.9-1)	
zg $=$	1200	(Table 26.9-1)	(Note: z not < 30, Exp. B, Case 1)
Kh =	0.70	$(\mathrm{Kh}=\mathrm{Kz}$ evaluated at $\mathrm{z}=\mathrm{h}$)	

Velocity Pressure: $q z=0.00256^{*} K z^{*} K z t^{*} K d^{*} V^{\wedge} 2$ (Sect. 30.3.2, Eq. 30.3-1)

$$
\mathrm{qh}=20.16 \mathrm{psf} \quad \mathrm{qh}=0.00256^{*} \mathrm{Kh}^{*} \mathrm{Kzt}^{*} \mathrm{Kd}^{*} V^{\wedge} 2 \text { (qz evaluated at } \mathrm{z}=\mathrm{h} \text {) }
$$

Design Net External Wind Pressures (Sect. 30.4 \& 30.6):
For $\mathrm{h}<=60 \mathrm{ft}$: $\mathrm{p}=\mathrm{qh}{ }^{*}((\mathrm{GCp})-(+/-\mathrm{GCpi}))$ (psf)
For h > 60 ft.: $\mathrm{p}=\mathrm{q}^{*}(\mathrm{GCp})-\mathrm{qi}^{*}(+/-\mathrm{GCpi})(\mathrm{psf})$
where: $q=q$ for roof
qi $=$ qh for roof (conservatively assumed per Sect. 30.6)

Roof Zones for Buildings with $\mathrm{h}<=\mathbf{6 0} \mathrm{ft}$.
(for Gable Roofs $<=45^{\circ}$ and Monoslope Roofs $<=3^{\circ}$)

ROOF PLAN
Roof Zones for Buildings with $\mathrm{h}>60 \mathrm{ft}$. (for Gable Roofs <=10 and Monoslope Roofs <=3 ${ }^{\circ}$)

Q -		CALC PACKAGE REPORT Brown Residence 14132 Pioneer Rd	
Level			
Member Name	Results	Current Solution	Comments
B14	Passed	3 piece(s) $13 / 4^{\prime \prime} \times 16^{\prime \prime} 2.0$ E Microllam® LVL	
B2	Passed	1 piece(s) $51 / 8^{\prime \prime} \times 15^{\prime \prime} 24 F-V 4$ DF Glulam	
Dining Upper Exterior Beam	Passed	1 piece(s) $51 / 8^{\prime \prime} \times 101 / 2^{\prime \prime} 24 F-V 4$ DF Glulam	
B10	Passed	4 piece(s) $13 / 4^{\prime \prime} \times 9$ 1/4" 2.0E Microllam® LVL	
B11	Passed	3 piece(s) $13 / 4$ " $\times 11$ 7/8" 2.0 E Microllam® LVL	
Deck J oist	Passed	1 piece(s) 2×8 Douglas Fir-Larch No. 2 @ 16" OC	
B7	Passed	1 piece(s) $51 / 8 " \times 10$ 1/2" 24F-V4 DF Glulam	
Deck Floor: Joist	Passed	1 piece(s) 2×10 Douglas Fir-Larch No. 2 @ 16" OC	
B16	Passed	1 piece(s) 6×12 Douglas Fir-Larch No. 2	
B17	Passed	1 piece(s) 4×12 Douglas Fir-Larch No. 2	

ForteWEB Software Operator	Job Notes
Andrew Aitchison	
Performance Engineers	
(208) 440-7836	
andrewa@inteframe.com	

Level, B14
3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$14797 @ 11^{\prime} 77^{\prime \prime}$	$18047(5.50 ")$	Passed (82\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$11312 @ 10^{\prime} 11 / 2^{\prime \prime}$	18354	Passed (62\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$48678 @ 6^{\prime}$	53672	Passed (91\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.314 @ 6^{\prime}$	0.563	Passed (L/430)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.353 @ 6^{\prime}$	0.750	Passed (L/382)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Roof
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Top Edge Bracing (Lu): Top compression edge must be braced at 4' 10 " o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $11^{\prime} 11^{\prime \prime}$ o/c unless detailed otherwise.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1-Stud wall - DF	5.50"	5.50"	4.50"	1658	13092	14750	Blocking
2 - Stud wall - DF	5.50"	5.50"	4.51"	1663	13134	14797	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0-Self Weight (PLF)	0 to $11^{\prime} 11^{\prime \prime}$	N / A	24.5	--	
1- Uniform (PSF)	0 to $11^{\prime} 11^{\prime \prime}$ (Front)	$11^{\prime} 6 \prime$	17.0	150.0	Default Load
2- Point (lb)	$6 '$ (Front)	N / A	699	5669	Linked from: B7, Support 1

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Level, B2
1 piece(s) 5 1/8" x 15" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$8412 @ 4 "$	$13613\left(4.25^{\prime \prime}\right)$	Passed (62\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$7043 @ 11^{\prime} 81 / 2^{\prime \prime}$	15618	Passed (45\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	$39543 @ 9^{\prime} 111 / 2^{\prime \prime}$	43605	Passed (91\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.893 @ 9^{\prime} 111 / 2^{\prime \prime}$	0.962	Passed (L/259)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$1.017 @ 9 ' 111 / 2^{\prime \prime}$	1.283	Passed (L/227)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

System : Roof
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Top Edge Bracing (Lu): Top compression edge must be braced at 19' 9" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 19' 9" o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 0.99 that was calculated using length $L=19^{\prime} 3^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1-Stud wall - DF	$5.50^{\prime \prime}$	$4.25^{\prime \prime}$	$2.63^{\prime \prime}$	1031	7469	8500	$11 / 4^{\prime \prime}$ Rim Board
2-Stud wall - DF	$5.50^{\prime \prime}$	$4.25^{\prime \prime}$	$2.63^{\prime \prime}$	1031	7469	8500	$11 / 4^{\prime \prime}$ Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow (1.15)	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $19^{\prime} 93 / 4^{\prime \prime}$	N / A	18.7	--	
1 - Uniform (PSF)	0 to $19^{\prime} 11^{\prime \prime}$ (Front)	5^{\prime}	17.0	150.0	Default Load

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Andrew Aitchison Performance Engineers (208) 440-7836 andrewa@inteframe.com		

Level, Dining Upper Exterior Beam

1 piece(s) 5 1/8" $\mathbf{x} 10$ 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5009 @ 4"	13613 (4.25")	Passed (37\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	4172 @ 1' 4"	10933	Passed (38\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	17288 @ 7' 5 1/2"	21660	Passed (80\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.626 @ 7' 5 1/2"	0.712	Passed (L/273)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.710 @ 7' 5 1/2"	0.950	Passed (L/241)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Roof
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Top Edge Bracing (Lu): Top compression edge must be braced at 14' 9" o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 14' 9" o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=14^{\prime} 3^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			(
	Total	Available	Required	Dead	Snow	Total	
1-Stud wall - DF	$5.50^{\prime \prime}$	$4.25^{\prime \prime}$	$1.56^{\prime \prime}$	603	4475	5078	$11 / 4^{\prime \prime}$ Rim Board
2 - Stud wall - DF	$5.50^{\prime \prime}$	$4.25^{\prime \prime}$	$1.56^{\prime \prime}$	603	4475	5078	$11 / 4^{\prime \prime}$ Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $14^{\prime} 93 / 4^{\prime \prime}$	N / A	13.1	--	
1 - Uniform (PSF)	0 to $14^{\prime} 11^{\prime \prime}$ (Front)	4^{\prime}	17.0	150.0	Default Load

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Andrew Aitchison Performance Engineers (208) 440-7836 andrewa@inteframe.com		

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$4447 @ 13^{\prime} 8^{\prime \prime}$	15313 (3.50")	Passed (29\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (Ibs)	$3764 @ 1^{\prime} 3 / 4^{\prime \prime}$	12303	Passed (31\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$14646 @ 6^{\prime} 11^{\prime \prime}$	22408	Passed (65\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.408 @ 6^{\prime} 11^{\prime \prime}$	0.450	Passed (L/397)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.546 @ 6^{\prime} 11^{\prime \prime}$	0.675	Passed (L/296)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor
Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 13' 10 " o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $13^{\prime} 10^{\prime \prime} \mathrm{o} / \mathrm{c}$ unless detailed otherwise.
- Member should be side-loaded from both sides of the member or braced to prevent rotation.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Total	
1-Column - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	1127	3320	4447	Blocking
2-Stud wall - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	1127	3320	4447	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to $13^{\prime} 10^{\prime \prime}$	N/A	18.9	--	
1 - Uniform (PSF)	0 to $13^{\prime} 10^{\prime \prime}$ (Front)	12^{\prime}	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Andrew Aitchison Performance Engineers (208) 440-7836 andrewa@inteframe.com		

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3312 @ 17' ${ }^{\prime \prime}$	11484 (3.50")	Passed (29\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	2823 @ 1'3 3/8"	11845	Passed (24\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	13806 @ 8' 8"	26772	Passed (52\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	0.378 @ 8' 8"	0.567	Passed (L/540)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	0.516 @ 8' 8"	0.850	Passed (L/396)	--	1.0 D + 1.0 L (All Spans)

System : Floor
Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at $17^{\prime} 4^{\prime \prime}$ o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $17^{\prime \prime} 4^{\prime \prime} 0 / \mathrm{C}$ unless detailed otherwise.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1- Column - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	886	2427	3313	Blocking
2-Stud wall - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	886	2427	3313	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to $17^{\prime} 4^{\prime \prime}$	N / A	18.2	--	
1 - Uniform (PSF)	0 to $17^{\prime} 4^{\prime \prime}$ (Front)	7^{\prime}	12.0	40.0	Default Load

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Andrew Aitchison Performance Engineers (208) 440-7836 andrewa@inteframe.com		

1 piece(s) 2×8 Douglas Fir-Larch No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	793 @ 7' 3 1/2"	1406 (1.50")	Passed (56\%)	--	1.0 D + 1.0 S (All Spans)
Shear (lbs)	665 @ 6' 8 5/8"	1501	Passed (44\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	1404 @ 3' 9"	1564	Passed (90\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.165 @ 3' 9"	0.373	Passed (L/543)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.185 @ 3' 9"	0.498	Passed (L/485)	--	1.0 D + 1.0 S (All Spans)

- Deflection criteria: LL (L/240) and TL (L/180).
- Top Edge Bracing (Lu): Top compression edge must be braced at 6' 1 " o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 7' $8 \mathrm{ln} \mathrm{o} / \mathrm{c}$ unless detailed otherwise.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1-Stud wall - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	90	750	840	Blocking
2- Hanger on 71/4" DF beam	$3.50^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	91	767	858	See note ${ }^{1}$

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	LRU26Z	$1.94 "$	N/A	4-10d	5-10d	

Loads	Location (Side)	Spacing	Dead $(\mathbf{0 . 9 0})$	Snow $(\mathbf{1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $7^{\prime} 7 \prime \prime$	$16^{\prime \prime}$	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Andrew Aitchison Performance Engineers (208) 440-7836 andrewa@inteframe.com		

Level, B7
1 piece(s) 5 1/8" $\times 10$ 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	9976 @ 12' $81 / 4 "$	17617 (5.50")	Passed (57\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	5578 @ 11' ${ }^{\prime \prime}$	10933	Passed (51\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	17921 @ 6' 3 5/16"	21660	Passed (83\%)	1.15	1.0 D + 1.0 S (Alt Spans)
Neg Moment (Ft-lbs)	-5292@ 12' $81 / 4^{\prime \prime}$	16696	Passed (32\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.487 @ 6' 5 1/4"	0.618	Passed (L/305)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Total Load Defl. (in)	0.543 @ 6' 5 3/16"	0.824	Passed (L/273)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)

System : Roof
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: $\mathrm{LL}(2 \mathrm{~L} / 240)$ and $\mathrm{TL}(2 \mathrm{~L} / 180)$. Upward deflection on right cantilever exceeds overhang deflection criteria.
- Top Edge Bracing (Lu): Top compression edge must be braced at $15^{\prime} 10$ " o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 15 ' 10 " o/c unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=11^{\prime} 105 / 8^{\prime \prime}$.
- Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length $L=4$ ' 7/8".
- Upward deflection on right cantilever exceeds 0.4^{4}.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1-Stud wall - DF	5.50"	4.25"	1.96"	699	5669	6368	1 1/4" Rim Board
2 - Stud wall - DF	5.50"	5.50"	$3.11{ }^{\prime \prime}$	1131	8845	9976	Blocking

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $15^{\prime} 11^{\prime \prime}$	N / A	13.1	--	
1 - Uniform (PSF)	0 to $15^{\prime} 11^{\prime \prime}$ (Front)	6^{\prime}	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Andrew Aitchison

Performance Engineers
(208) 440-7836
andrewa@inteframe.com

Level, Deck Floor: Joist

1 piece(s) 2×10 Douglas Fir-Larch No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	893 @ 2 1/2"	1434 (2.25")	Passed (62\%)	--	1.0 D + 1.0 S (All Spans)
Shear (lbs)	689 @ 1'3/4"	1915	Passed (36\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	1779 @ 4' $31 / 2^{\prime \prime}$	2334	Passed (76\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.126 @ 4' 3 1/2"	0.204	Passed (L/775)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.135 @ 4' 3 1/2"	0.408	Passed (L/727)	--	1.0 D + 1.0 S (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	N/A	N/A	--	--	--

System : Floor
Member Type : Joist
Building Use : Residential
Building Code : IBC 2015
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 6 ' 10 " o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $8{ }^{\prime} 5 \mathrm{o} \circ / \mathrm{c}$ unless detailed otherwise.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1-Stud wall - SPF	3.50"	2.25 "	1.50 "	57	858	915	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25 "	1.50"	57	858	915	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Loads	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $8^{\prime} 7^{\prime \prime}$	$16^{\prime \prime}$	10.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Andrew Aitchison Performance Engineers (208) 440-7836 andrewa@inteframe.com		

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$5143 @ 11 / 4^{\prime \prime}$	$9453(2.75 ")$	Passed (54\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$3699 @ 11^{\prime} 21 / 4^{\prime \prime}$	8244	Passed (45\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$10346 @ 4^{\prime} 23 / 4^{\prime \prime}$	10166	Passed (102\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.129 @ 44^{\prime} 23 / 4^{\prime \prime}$	0.275	Passed (L/765)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.140 @ 44^{\prime} 23 / 4^{\prime \prime}$	0.412	Passed (L/708)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Floor
Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at $6^{\prime \prime}$ o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $8^{\prime} 6^{\prime \prime} \circ / \mathrm{c}$ unless detailed otherwise.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			(
	Total	Available	Required	Dead	Snow	Total	
1-Stud wall - DF	$2.75^{\prime \prime}$	$2.75^{\prime \prime}$	$1.50^{\prime \prime}$	385	4758	5143	Blocking
2 - Stud wall - DF	$2.75^{\prime \prime}$	$2.75^{\prime \prime}$	$1.50^{\prime \prime}$	385	4758	5143	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $8^{\prime} 51 / 2^{\prime \prime}$	N/A	16.0	--	
1 - Uniform (PSF)	0 to $8^{\prime} 51 / 2^{\prime \prime}$ (Front)	$7^{\prime} 6^{\prime \prime}$	10.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Andrew Aitchison Performance Engineers (208) 440-7836 andrewa@inteframe.com		

Level, B17
1 piece(s) 4×12 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3456 @ 1 1/4"	6016 (2.75")	Passed (57\%)	--	1.0 D + 1.0 S (All Spans)
Shear (lbs)	2324 @ 1' ${ }^{\prime \prime}$	5434	Passed (43\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	5800 @ 3' 6 3/4"	7004	Passed (83\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.070 @ 3' 6 3/4"	0.231	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.075 @ 3' 6 3/4"	0.346	Passed (L/999+)	--	1.0 D + 1.0 S (All Spans)

System : Floor
Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 7' $2^{\prime \prime}$ o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $7^{\prime} 2^{\prime \prime} \mathrm{o} / \mathrm{c}$ unless detailed otherwise.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Total	Accessories
1-Stud wall - DF	$2.75^{\prime \prime}$	$2.75^{\prime \prime}$	$1.58^{\prime \prime}$	249	3206	3455	Blocking
2 - Stud wall - DF	$2.75^{\prime \prime}$	$2.75^{\prime \prime}$	$1.58^{\prime \prime}$	249	3206	3455	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $7^{\prime} 11 / 2^{\prime \prime}$	N/A	10.0	--	
1 - Uniform (PSF)	0 to $7^{\prime} 11 / 2^{\prime \prime}$ (Front)	6^{\prime}	10.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Andrew Aitchison Performance Engineers (208) 440-7836 andrewa@inteframe.com		

Wood Header Al/owable Loads kip/ft
Brown Residence
2019-07235
Valley County, Idaho
2015 IBC
1.00
1.9 E
2'-0" O.C.
L/240, 0.75in
No

Header Span											
Header Type	2'	3^{\prime}	4^{\prime}	5'	6^{\prime}	8^{\prime}	10'	12'	14'	16'	18'
(2) 2×4 DF Stud	1.00	0.60	0.25	0.22	0.10	NA	NA	NA	NA	NA	NA
(3) 2×4 DF Stud	1.60	0.90	0.40	0.35	0.16	NA	NA	NA	NA	NA	NA
(2) 2×6 DF \#2	2.90	1.25	0.72	0.48	0.31	0.17	0.10	NA	NA	NA	NA
(3) 2×6 DF \#2	4.40	1.90	1.10	0.72	0.48	0.26	0.16	0.11	NA	NA	NA
(2) 2×8 DF \#2	4.70	2.00	1.10	0.80	0.51	0.28	0.17	0.12	0.08	NA	NA
(3) 2×8 DF \#2	7.60	2.95	1.90	1.18	0.84	0.46	0.29	0.20	0.14	0.10	NA
(2) 2×10 DF \#2	7.00	2.95	1.70	1.18	0.77	0.42	0.27	0.18	0.13	0.09	NA
(3) 2×10 DF \#2	11.50	4.50	2.80	1.80	1.20	0.71	0.45	0.31	0.22	0.17	0.13
(2) 2×12 DF \#2	9.40	4.20	2.30	1.60	1.00	0.58	0.36	0.25	0.18	0.13	0.10
(3) 2×12 DF \#2	15.60	6.10	3.90	2.40	1.70	0.96	0.61	0.42	0.30	0.23	0.18
(2) 1-3/4×7-1/4 LVL	12.00	5.90	3.30	2.40	1.40	0.82	0.45	0.26	0.16	0.10	NA
(3) 1-3/4×7-1/4 LVL	18.00	9.10	4.90	3.50	2.20	1.20	0.69	0.39	0.24	0.15	NA
(2) 1-3/4×9-1/2 LVL	21.50	9.10	4.90	3.75	2.30	1.30	0.80	0.55	0.34	0.21	0.13
(3) 1-3/4×9-1/2 LVL	32.30	15.00	7.40	6.00	3.50	2.00	1.20	0.83	0.52	0.32	0.19
(2) 1-3/4×11-7/8 LVL	35.40	15.00	7.70	6.00	3.90	2.20	1.40	0.97	0.71	0.46	0.28
(3) 1-3/4×11-7/8 LVL	53.30	21.00	11.50	8.75	5.80	3.30	2.10	1.40	1.00	0.69	0.42
(2) 1-3/4×14 LVL	49.10	21.00	10.90	8.00	5.00	3.00	1.90	1.30	0.98	0.75	0.47
(3) 1-3/4×14 LVL	74.00	25.00	16.40	12.00	7.50	4.60	2.90	2.00	1.40	1.10	0.70

Project Name: Brown Residence
Job Number: 2019-07235
Location: Valley County, Idaho
Engineer: ARA
Checker: $\overline{K J}$
This spreadsheet is used for designing a stud wall according to the NDS.
Inputs are in ITALICS and outputs are in BOLDFACE.

Project Name: Brown Residence
Job Number: 2019-07235
Location: Valley County, Idaho
Engineer: ARA
Checker: $\overline{K J}$
This spreadsheet is used for designing a stud wall according to the NDS.
Inputs are in ITALICS and outputs are in BOLDFACE.

18' Trimmer			
Species Grade	DF-L		
	No. 2		
$\mathrm{t}=$	(2) 2	in	3.00 in
$\mathrm{d}=$	8	in	7.25 in
L =	18	ft	17.750 ft
$\mathrm{s}=$	16	in	w/o Plates
$\mathrm{w}_{\text {wind }}=$	5.00	psf	
$\mathrm{P}=$	4885	lbs	
e $=$	0	in	
$\mathrm{K}_{\mathrm{cE}}=$	0.3		
$\mathrm{c}=$	0.8		
w =	6.7	plf	
F_{b}	F_{v}	F_{c}	$\mathrm{F}_{\text {c-perp }}$
900 psi	190 psi	1,350 psi	625 psi
1.60	1.60	1.60	
1.20		1.05	
1.00			
0.23			
1.00			
1.00			
E			
1,600,000 psi		580,000 psi	
$\mathrm{F}_{\mathrm{b}} \mathrm{C}_{\mathrm{d}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{r}}=$	1,728 psi		
$\mathrm{F}_{\mathrm{v}} \mathrm{C}_{\mathrm{d}} \mathrm{C}_{\mathrm{H}}=$	304 psi		
$\mathrm{F}_{\mathrm{c}} \mathrm{C}_{\mathrm{d}} \mathrm{C}_{\mathrm{F}}=$	2,268 psi		
$\left(\mathrm{K}_{\mathrm{cE}} \mathrm{E}^{\prime}\right) /\left(l_{\mathrm{e}} / \mathrm{d}\right) 2=$	556 psi		
$\mathrm{F}_{\mathrm{c}} \mathrm{C}_{\mathrm{d}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{p}}=$	525 psi		
$\begin{array}{cr}\mathrm{F}_{\mathrm{c} \text { perp }} \mathrm{Cb} \\ \mathrm{E}= & \mathbf{1 , 6 0 0 , 0 0 0} \mathrm{psi}\end{array}$			
13 < 50 OK			
4056 psi			
$w L^{2} / 8+P \mathrm{e} / 12=$	263 lb ft		
$\mathrm{M} / \mathrm{S}=$	120 psi		$\underline{\underline{\text { F'b OK }}}$
$\mathrm{S}=26.28 \mathrm{in}^{3}$			
w L/2 =	44 lbs		
$1.5 \mathrm{~V} / \mathrm{A}=$	3.06 psi		< F'v OK
$\mathrm{A}=21.75 \mathrm{in}^{2}$			
$\mathrm{P} / \mathrm{A}=$	224.6 psi		$\leq \mathrm{F}^{\prime} \mathrm{C}$ OK
$P / A=$	224.6 psi		$\leq \mathrm{F}^{\prime} \mathrm{C}$ OK
$(\mathrm{fc} / \mathrm{Fc}) 2+\{\mathrm{fb} /[\mathrm{Fb}(1-(\mathrm{fc} / \mathrm{FcE})]\}=$		0.30	≤ 1.0 OK
22.5 w L"/E' I =	0.10	in =	SPAN
	$95.27 \mathrm{in}^{4}$		2181
			≥ 180 OK

Project Name: Brown Residence
Job Number: 2019-07235
Location: Valley County, Idaho
Engineer: ARA
Checker: $\overline{K J}$
This spreadsheet is used for designing a stud wall according to the NDS.
Inputs are in ITALICS and outputs are in BOLDFACE.

PERFORMANCE

Project Name:
Job Number: Location:

Wood Trimmer Allowable Loads, kips

Governing Code:
Load Duration Factor:
Brown Residence
2019-07235
Valley County, Idaho
2015 IBC
Eccentricity
1.0

Weak Axis Braced
$0 "$
Y
Height

Max Allow Compres sionWoo								
Trimmer Type								
d Header								

Individual Footing Design

Program: (Calc).xlsx]F1 Footing Design

Description:

Inputs are in ITALICS and outputs are in BOLDFACE.

Soil Bearing Pressure: 1500psf

Roof

$$
\begin{array}{rll}
\text { Dead Load: }(17 p s f) & (2.0 f t) & =34 \text { plf } \\
\text { Live/Snow Load: }(150 p s f) & (2.0 f t) & =300 \text { plf }
\end{array}
$$

Upper Floor

Dead Load:	$(10 \mathrm{psf})$	$(12.0 \mathrm{ft})$	$=120$ plf
Live Load:	$(40 \mathrm{psf})$	$(12.0 \mathrm{ft})$	$=480$ plf

Main Floor

Dead Load:	$(10 \mathrm{psf})$	$(2.0 \mathrm{ft})$
Live Load:	$(40 \mathrm{psf})$	$(2.0 \mathrm{ft})$

Basement

Dead Load:	(10psf)
Live Load:	(40psf)

(.Oft) $=$ plf

Live Load: (40psf)
(.Oft) $=$ plf

Misc

Wall Load:	$(12 p s f)$	$(10.0 \mathrm{ft})$	$=120$ plf
Conc Stem:	$(145 p c f)$	$(2 x .5 \mathrm{ft})$	$=145$ plf
Misc Load:	$(.0 \mathrm{ft})$	(.Oft $) \quad(.0 \mathrm{ft})$	$=$ plf

1299plf

Use Footing Width:	12×8	in
$\mathrm{W} /$	(2) $\# 4$	Cont.

Individual Footing Design

Program: (Calc).xIsx]F2.5 Footing Design

Description:

Inputs are in ITALICS and outputs are in BOLDFACE.

Soil Bearing Pressure: 1500psf

Roof

$$
\begin{array}{rll}
\text { Dead Load: } & (17 p s f) & (17.0 f t) \\
\text { Live/Snow Load: } & \text { (150psf) } & \text { (17.0ft) }
\end{array}
$$

Upper Floor

Dead Load:	$(10 \mathrm{psf})$	$(2.0 \mathrm{ft})$
Live Load:	$(40 \mathrm{psf})$	$(2.0 \mathrm{ft})$

Main Floor

Dead Load:	$(10 \mathrm{psf})$	$(2.0 \mathrm{ft})$
Live Load:	$(40 \mathrm{psf})$	$(2.0 \mathrm{ft})$

Basement

Dead Load:	(10psf)
Live Load:	$(40 p s f)$

(.Oft) $=$ plf

Live Load: (40psf)
(.Oft) $=$ plf

Misc

Wall Load:	$(12 p s f)$	$(9.0 f t)$	$=108$ plf
Conc Stem:	$(145 p c f)$	$(2 x .5 f t)$	$=145$ plf
Misc Load:	$(.0 f t)$	(.Oft) \quad (.Oft)	$=$ plf

Use Footing Width:	30×10	in
$\mathrm{W} /$	(3) $\# 4$	Cont.

Individual Footing Design

Program: (Calc).xlsx]F3 Footing Design

Description:

Inputs are in ITALICS and outputs are in BOLDFACE.

Soil Bearing Pressure: 1500psf

Roof

$$
\begin{array}{rll}
\text { Dead Load: } & (17 p s f) & (19.0 f t) \\
\text { Live/Snow Load: } & \text { (150psf) } & \text { (19.0ft) }
\end{array}
$$

Upper Floor

Dead Load:	$(10 \mathrm{psf})$	$(2.0 \mathrm{ft})$
Live Load:	$(40 \mathrm{psf})$	$(2.0 \mathrm{ft})$

Main Floor

Dead Load:	$(10 \mathrm{psf})$	$(2.0 \mathrm{ft})$
Live Load:	$(40 \mathrm{psf})$	$(2.0 \mathrm{ft})$

Basement

Dead Load:	(10psf)
Live Load:	$(40 p s f)$

(.Oft) $=$ plf

Live Load: (40psf)
(.Oft) $=$ plf

Misc

Wall Load:	$(12 p s f)$	$(9.0 f t)$	$=108$ plf
Conc Stem:	$(145 p c f)$	$(2 x .5 f t)$	$=145$ plf
Misc Load:	$(.0 f t)$	(.Oft) \quad (.Oft)	$=$ plf

Use Footing Width:	36×10	in
$\mathrm{W} /$	(3) $\# 4$	Cont.

Individual Footing Design

Program: (Calc).xlsx]F3.5 Footing Design

Description:

Inputs are in ITALICS and outputs are in BOLDFACE.

Soil Bearing Pressure: 1500psf

Roof

$$
\begin{array}{rll}
\text { Dead Load: } & (17 p s f) & (19.0 f t) \\
\text { Live/Snow Load: } & \text { (150psf) } & \text { (19.0ft) }
\end{array}
$$

Upper Floor

Dead Load:	$(10 \mathrm{psf})$	$(.0 f t)$	$=$
Live Load:	$(40 \mathrm{psf})$	$(.0 \mathrm{ft})$	$=$
		plf	

Main Floor

Dead Load:	$(10 \mathrm{psf})$	$(5.0 f t)$	$=50$ plf
Live Load:	$(40 \mathrm{psf})$	$(5.0 \mathrm{ft})$	$=\mathbf{2 0 0} \mathrm{plf}$

Deck

Dead Load: (10psf)
Live Load: (150psf)
(4.0ft)
$=40$ plf
(4.0ft)
$=600 \mathrm{plf}$
Misc

Wall Load:	$(12 p s f)$	$(18.0 f t)$	$=$
Conc Stem:	$(145 p c f)$	$(2 x .5 f t)$	$=145$ plf
Misc Load:	$(.0 f t)$	$(.0 f t) \quad(.0 f t)$	$=$ plf

Use Footing Width:	42×10	in	
W/	(4)	\#4	Cont.

PERFORMANCE
Project \# :
2019-07235
Project:

Point Load Footing Design

	Square Concrete Footing Pads for Soil Bearing = 1500 psf			
size (")	max magnitude (kip)	number of \#4 Rebar	Thickness (")	min column size (")
18	2.90			3.5
24	5.30	2		3.5
30	8.35	3		3.5
36	12.00	3	8	3.5
42	16.50	4		3.5
48	21.50	4		3.5
54	27.00	5		3.5
60	33.45	6		3.5
66	39.75	7	10	5.5
72	47.50	8	10	5.5

Bars to be 3 1/2" from bottom of pad. Evenly space in both directions.

Vertical component of active lateral soil pressure IS considered in the calculation of soil bearing pressures.

Load Factors	
Building Code	Other
Dead Load	1.200
Live Load	1.600
Earth, H	1.600
Wind, W	1.000
Seismic, E	1.000

Key: Slab Resists Sliding -or- Slab Resists Sliding - No Force on
-or- Not req'd: $\mathrm{Mu}<$ phi*$^{*} 5^{*}$ lambda*sqrt(f'c)*Sm
-or- Not req'd: $M u$ < phi*5*lambda*sqrt(f'c)* ${ }^{*}$ Sm

Other Acceptable Sizes \& Spacings:

Toe: None Spec'd	-or-	Not req'd: $M u<$ phi* * ªmbda*sqrt(f'c)*

RetainPro (c) 1987-2015, Build 11.15.7.02 License: KW-06059986 License To : Performance Engineers			Restrained Retaining Wall Design			
Footing Strengths \& Dimensions			Footing Design Results			Heel
Toe Width	=	0.42 ft			Toe	
Heel Width	=	0.92	Factored Pressure	=	0	0 psf
Total Footing Width	=	1.33	Mu' : Upward		0	0 ft -\#
Footing Thickness	=	10.00 in	Mu' : Downward		0	0 ft -\#
Key Width	$=$	12.00 in	Mu: Design		0	0 ft \#
Key Depth	=	0.00 in	Actual 1-Way Shear		0.00	0.00 psi
Key Distance from Toe	=	2.00 ft	Allow 1-Way Shear	=	75.00	75.00 psi
$\mathrm{f}^{\prime} \mathrm{c}=\quad 2,500 \mathrm{psi}$ Footing Concrete Density		$\begin{aligned} & 60,000 \mathrm{psi} \\ & 150.00 \mathrm{pcf} \end{aligned}$				
Min. As \%	$=$	0.0018				
Cover @ Top = 2.00 in	¢	m. $=3.00$				

Summary of Forces on Footing : Slab RESISTS sliding, stem is FIXED at footing

Forces acting on footing for soil pressure
Load \& Moment Summary For Footing: For Soil Pressure Calcs $\quad \ggg$ Sliding Forces are restrained by the adjacent slab

Load \& Moment Summary For Footing : For Soil Pressure Calcs

Moment @ Top of Footing Applied from Stem	$=$	$-113.3 \mathrm{ft}-\#$		
Surcharge Over Heel	$=$	lbs	ft	$\mathrm{ft}-\#$
Adjacent Footing Load	$=$	lbs	ft	$\mathrm{ft}-\#$
Axial Dead Load on Stem	$=$	668.0 lbs	0.67 ft	$445.2 \mathrm{ft}-\#$
Soil Over Toe	$=$	91.6 lbs	0.21 ft	$19.1 \mathrm{ft}-\#$
Surcharge Over Toe	$=$	lbs	ft	$\mathrm{ft}-\#$
Stem Weight	$=$	450.0 lbs	0.67 ft	$299.9 \mathrm{ft}-\#$
Soil Over Heel	$=$	229.1 lbs	1.12 ft	$257.7 \mathrm{ft}-\#$
Footing Weight	$=$	166.6 lbs	0.67 ft	$111.6 \mathrm{ft}-\#$
Total Vertical Force	$=$	$1,605.3 \mathrm{lbs}$	Base Moment	$1,020.2 \mathrm{ft}-\#$

Soil Pressure Resulting Moment =
49.8t-\#

Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance.

Wind Shear Force Calculations

From 'ASCE 7-10 Wind Loading Analysis':

LOAD CASE 'A'	
$\mathrm{a}=3.20$ feet	2a $=6.40$ feet
Z1 $=7.45 \mathrm{psf}$	Z1E $=11.04 \mathrm{psf}$
$\mathrm{Z2}=-5.63 \mathrm{psf}$	Z2E $=-7.47 \mathrm{psf}$
Z3 $=-12.64 \mathrm{psf}$	Z3E $=-15.42 \mathrm{psf}$
Z4 $=-11.50 \mathrm{psf}$	Z4E $=-14.41 \mathrm{psf}$

'A' FACTORED LOADS
$0.6 * W_{r}=\left(Z_{2}+Z_{3}\right)^{*} 0.6=\quad 4.2$ psf
$0.6^{*} W_{r E}=\left(Z_{2 E}+Z_{3 E}\right) * 0.6=$
$0.6^{*} \mathrm{~W}_{\mathrm{w}}=\left(Z_{1}+Z_{4}\right) * 0.6=$
$0.6 * \mathrm{~W}_{\mathrm{wE}}=\left(\mathrm{Z}_{1 \mathrm{E}}+\mathrm{Z}_{4 \mathrm{E}}\right) * 0.6=$
4.8 psf 11.4 psf 15.3 psf
'B' FACTORED LOADS
$0.6 * W_{r}=\left(Z_{2}+Z_{3}\right) * 0.6=$ 3.9 psf
$0.6 * W_{r E}=\left(Z_{2 E}+Z_{3 E}\right) * 0.6=$
6.5 psf
$0.6 * W_{w}=\left(Z_{1}+Z_{4}\right) * 0.6=$
8.3 psf
$0.6 * W_{w E}=\left(Z_{1 E}+Z_{4 E}\right) * 0.6=$ 12.6 psf

LOAD CASE 'B'	
$\mathrm{a}=3.20 \mathrm{psf}$	$2 \mathrm{a}=6.40$ feet
Z1 $=4.44 \mathrm{psf}$	Z1E $=8.67 \mathrm{psf}$
Z2 $=-17.54 \mathrm{psf}$	Z2E $=-25.20 \mathrm{psf}$
Z3 $=-11.09 \mathrm{psf}$	Z3E $=-14.31 \mathrm{psf}$
Z4 $=-9.48 \mathrm{psf}$	Z4E $=-12.30 \mathrm{psf}$

$\mathrm{X} 1-1$	12.62	9	0	20.00	+	9.60	8.00	20	+		$=$
$\mathbf{1}$	$\mathbf{1 . 3 4}$										
$\mathrm{X} 2-1$	12.62	9	4	20.00	+	9.60	0.00	20	+	1.81	$=$
$\mathrm{X} 3-1$	12.62	9	4	20.00	+	9.60	0.00	20	+	1.22	$=$
$\mathrm{X} 4-1$	12.62	9	4	20.00	+	9.60	0.00	20	+	1.22	$=$
											$\mathbf{2 . 3 0}$
$\mathrm{Y} 1-1$	12.33	9	0	26.00	+	9.60	4.00	26	+		$=$
$\mathrm{Y} 2-1$	11.97	9	4	42.00	+	9.60	4.00	26	+	2.62	$=$
$\mathrm{Y} 3-1$	11.76	9	4	64.00	+	9.60	0.00	64	+	3.96	$=$
$\mathrm{Y} 4-1$	12.33	9	4	26.00	+	9.60	0.00	26	+	1.64	$=$

Project: Brown Residence

Project \#:
Location: $\frac{\text { 2019-07235 }}{\text { Engineer: }} \overline{\text { Valley County, Idaho }}$
Checker:

Description:

X1-2 Shear Wall

Perforated Shear Wall Calculation Sheet:
This spreadsheet is made in conformance to the IBC Chapters 2305-2308 and AFPA's "SDPWS: Lateral Force Resisting Systems".

Shear Wall Forces

Total length of wall
Total length of shear wall
Total length of full height segments
height of shear wall
Maximum opening height
\#VALUE!
Self weight
Applied dead load
Prefered OSB thickness
Wall Connected to Concrete
Wall Connected to Truss Heel
Wall Connected to Gable / Drag Truss or Rim
Shearwall segments

Unit Base Shear

$\%_{\text {fh }}=\mathrm{L}_{\mathrm{w}} / \mathrm{L}=$	1.000
$\%_{\text {oh }}=\mathrm{H}^{\prime} / \mathrm{H}=$	0.000
SCAF $=$	1.00
$\mathrm{v}_{\text {base }}=\mathrm{V}_{1} / \mathrm{L}_{\mathrm{w}}=$	\#VALUE!
$\mathrm{v}_{\text {req }}=\mathrm{v}_{\text {base }} / \mathrm{SCAF}$	\#VALUE!
OTM =	\#VALUE!

Percent of full height segments
Percent of maximum opening height
Shear capacity adjustment factors (NDS SDPWS Table)
Unit base shear
Effective unit base shear \#VALUE!
\#VALUE!
Shear wall adjustment factor

Project: Brown Residence
Project \# : 2019-07235
Location: Valley County, Idaho
Engineer: ARA
Checker: $\overline{K J}$

Three Sided Diaphragm Calculations

From NDS Wind \& Seismic 'Special Design Provisions for Wind \& Seismic " Section 4.2.5.2

Design Criteria	
Diaphragm Length	Diaphragm Width
L 21.00 feet	W 42.00 feet
Check For Length<35'	OK
Length To Width Ratio	0.5
Check For <1:1 Length Ratio	OK

Forces in R1 \& R2 Due to Rotation		
P Design	$=$	1812 \#
R1 Due to Rotation	$=$	453 \#
R1 Due to Transverse Load	$=$	$2618 ~ \#$
Governing Inplane Load R1	$=$	$\mathbf{2 6 1 8} \#$
R2 Due to Rotation	$=$	453 \#
R2 Due to Transverse Load	$=$	3963 \#
Governing Inplane Load R2	$=$	$\mathbf{3 9 6 3} \#$

Project: Brown Residence
Project \# : 2019-07235
Location: Valley County, Idaho
Engineer: $\overline{A R A}$
Checker: $\overline{K J}$

Description:

X2-2 Shear Wall

Perforated Shear Wall Calculation Sheet:
This spreadsheet is made in conformance to the IBC Chapters 2305-2308 and AFPA's "SDPWS: Lateral Force Resisting Systems".

Shear Wall Forces

Total length of wall Total length of shear wall
Total length of full height segments
height of shear wall
Maximum opening height
Total Wind force at top of wall
Self weight
Applied dead load
Prefered OSB thickness
Wall Connected to Concrete
Wall Connected to Truss Heel
Wall Connected to Gable / Drag Truss or Rim

Shearwall segments
5
3.58

Unit Base Shear
$\%_{\text {fh }}=L_{w} / L=$
$\%_{o h}=H^{\prime} / \mathrm{H}=$
SCAF

Percent of full height segments
Percent of maximum opening height
Shear capacity adjustment factors (NDS SDPWS Table)
Unit base shear
Effective unit base shear
Overturning moment of total length of wall

Shear wall adjustment factor

T = Not Req'd lbs

OSB Wall Sheathing attachment

Provide: 7/16" OSB W/ 8d Nails @ 6" O.C.

Provide: 7/16" OSB W/ 1½ 16 Gage Staples @ 4" O.C.
$V a=322$

Project: Brown Residence
Project \# : 2019-07235
Location: Valley County, Idaho
Engineer: $\overline{A R A}$
Checker: $\overline{K J}$

Description:

X3-2 Shear Wall

Perforated Shear Wall Calculation Sheet:
This spreadsheet is made in conformance to the IBC Chapters 2305-2308 and AFPA's "SDPWS: Lateral Force Resisting Systems".

Shear Wall Forces

Total length of wall
Total length of shear wall
Total length of full height segments
height of shear wall
Maximum opening height
Total Wind force at top of wall
Self weight
Applied dead load
Prefered OSB thickness
Wall Connected to Concrete
Wall Connected to Truss Heel
Wall Connected to Gable / Drag Truss or Rim

Shearwall segments

Unit Base Shear

$\%_{\text {fh }}=\mathrm{L}_{\mathrm{w}} / \mathrm{L}=$	0.667
$\%_{\text {oh }}=\mathrm{H}^{\prime} / \mathrm{H}=$	0.375
SCAF =	0.96
$\mathrm{V}_{\text {base }}=\mathrm{V}_{1} / \mathrm{L}_{\mathrm{w}}=$	77
$\mathrm{v}_{\text {req }}=\mathrm{v}_{\text {base }} /$ SCAF	80
OTM =	10,204

Percent of full height segments
Percent of maximum opening height
Shear capacity adjustment factors (NDS SDPWS Table)
Unit base shear
Effective unit base shear
Overturning moment of total length of wall

Shear wall adjustment factor

$\mathrm{T}=$ Not Req'd lbs

OSB Wall Sheathing attachment

Provide: 7/16" OSB W/ 8d Nails @ 6" O.C.
$V a=336$

Provide: 7/16" OSB W/ 1½ 16 Gage Staples @ 6" O.C.
$V a=217$

Project: Brown Residence
Project \# : 2019-07235
Location: Valley County, Idaho
Engineer: $\overline{A R A}$
Checker: $\overline{K J}$

Description:

X4-2 Shear Wall

Perforated Shear Wall Calculation Sheet:
This spreadsheet is made in conformance to the IBC Chapters 2305-2308 and AFPA's "SDPWS: Lateral Force Resisting Systems".

Shear Wall Forces

Total length of wall
Total length of shear wall
Total length of full height segments
height of shear wall
Maximum opening height
Total Wind force at top of wall
Self weight
Applied dead load
Prefered OSB thickness
Wall Connected to Concrete
Wall Connected to Truss Heel
Wall Connected to Gable / Drag Truss or Rim

Shearwall segments
3.75
7.33
3.67

Unit Base Shear
$\%_{\text {fh }}=L_{w} / L=$
$\%_{o h}=H^{\prime} / H=$
SCAF
$v_{\text {base }}=V_{1} / L_{w}=$

Percent of full height segments
Percent of maximum opening height
Shear capacity adjustment factors (NDS SDPWS Table)
Unit base shear
Effective unit base shear Overturning moment of total length of wall

Shear wall adjustment factor

T = Not Req'd lbs

OSB Wall Sheathing attachment

Provide: 7/16" OSB W/ 8d Nails @ 6" O.C.
$V a=336$

Provide: 7/16" OSB W/ 1½ 16 Gage Staples @ 6" O.C.
Va= 217

Project: Brown Residence
Project \# : 2019-07235
Location: Valley County, Idaho
Engineer: $\overline{A R A}$
Checker: $\overline{K J}$

Description:

Y1-2 Shear Wall

Perforated Shear Wall Calculation Sheet:
This spreadsheet is made in conformance to the IBC Chapters 2305-2308 and AFPA's "SDPWS: Lateral Force Resisting Systems".

	22.00 ft	Total length of wall
L =	22.00 ft	Total length of shear wall
$\mathrm{L}_{\mathrm{w}}=$	16.58 ft	Total length of full height segments
$\mathrm{H}=$	8.00 ft	height of shear wall
$\mathrm{H}^{\prime}=$	4.00 ft	Maximum opening height
$V_{1}=$	2618 lbs	Total Wind force at top of wall
$\mathrm{W}_{\mathrm{DL} \text { self }}=$	95.84 plf	Self weight
$\mathrm{W}_{\text {DL above }}=$	68.00 plf	Applied dead load
	7/16 in	Prefered OSB thickness
	$\mathrm{N} \mathrm{y} / \mathrm{n}$	Wall Connected to Concrete
	$\mathrm{N} y / \mathrm{n}$	Wall Connected to Truss Heel
	$y \mathrm{y} / \mathrm{n}$	Wall Connected to Gable / Drag Truss or Rim
Unit Base Shear		
$\%_{\text {fh }}=L_{\text {w }} / \mathrm{L}=$	0.754	Percent of full height segments
$\%_{\text {oh }}=\mathrm{H}^{\prime} / \mathrm{H}=$	0.500	Percent of maximum opening height
SCAF $=$	0.89	Shear capacity adjustment factors (NDS SDPWS Table)
$\mathrm{v}_{\text {base }}=\mathrm{V}_{1} / \mathrm{L}_{\mathrm{w}}=$	158 plf	Unit base shear
$\mathrm{v}_{\text {req }}=\mathrm{v}_{\text {base }} /$ SCAF	177 plf	Effective unit base shear
OTM =	23,526 lb ft	Overturning moment of total length of wall
Shear wall adjustment factor		
RM $=$	39,649 lb ft	Resisting moment of total length of wall
$\mathrm{r}=$	0.8595	
$\mathrm{C}_{0}=$	0.8903	
	119 plf	Blocking Unit Shear
	177.37	Force Calculated
	2.29 ft	Min Shear Wall Segment

Shearwall segments

T = Not Req'd lbs

OSB Wall Sheathing attachment

Provide: 7/16" OSB W/ 8d Nails @ 6" O.C.

Provide: 7/16" OSB W/ 1½ 16 Gage Staples @ 6" O.C.
$\mathrm{Va}=217$

Project: Brown Residence
Project \# : 2019-07235
Location: Valley County, Idaho
Engineer: $\overline{A R A}$
Checker: $\overline{K J}$

Description:

Y2-2 Shear Wall

Perforated Shear Wall Calculation Sheet:
This spreadsheet is made in conformance to the IBC Chapters 2305-2308 and AFPA's "SDPWS: Lateral Force Resisting Systems".

Shear Wall Forces		
	36.00 ft	Total length of wall
L =	36.00 ft	Total length of shear wall
$\mathrm{L}_{\mathrm{w}}=$	31.58 ft	Total length of full height segments
$\mathrm{H}=$	8.00 ft	height of shear wall
$\mathrm{H}^{\prime}=$	8.00 ft	Maximum opening height
$\mathrm{V}_{1}=$	3963 lbs	Total Wind force at top of wall
$\mathrm{W}_{\mathrm{DL} \text { self }}=$	95.84 plf	Self weight
$\mathrm{W}_{\mathrm{DL} \text { above }}=$	68.00 plf	Applied dead load
	7/16 in	Prefered OSB thickness
	$\mathrm{N} \mathrm{y} / \mathrm{n}$	Wall Connected to Concrete
	$\mathrm{N} y / \mathrm{n}$	Wall Connected to Truss Heel
	$y \mathrm{y} / \mathrm{n}$	Wall Connected to Gable / Drag Truss or Rim
Unit Base Shear		
$\%_{\text {fh }}=L_{\text {w }} / \mathrm{L}=$	0.877	Percent of full height segments
$\%_{\text {oh }}=\mathrm{H}^{\prime} / \mathrm{H}=$	1.000	Percent of maximum opening height
SCAF =	0.80	Shear capacity adjustment factors (NDS SDPWS Table)
$\mathrm{V}_{\text {base }}=\mathrm{V}_{1} / \mathrm{L}_{\mathrm{w}}=$	126 plf	Unit base shear
$\mathrm{v}_{\text {req }}=\mathrm{v}_{\text {base }} /$ SCAF	156 plf	Effective unit base shear
OTM =	39,494 lb ft	Overturning moment of total length of wall
Shear wall adjustment factor		
$\begin{aligned} \hline \mathrm{RM} & = \\ \mathrm{r} & = \\ \mathrm{C}_{\mathrm{o}} & = \end{aligned}$	106,168 lb ft	Resisting moment of total length of wall
	0.8772	
	0.8029	
	110 plf	Blocking Unit Shear
	156.32	Force Calculated
	2.29 ft	Min Shear Wall Segment

Shearwall segments
17.25
14.33

T = Not Req'd lbs

OSB Wall Sheathing attachment

Provide: 7/16" OSB W/ 8d Nails @ 6" O.C.
$V a=336$

Provide: 7/16" OSB W/ 1½ 16 Gage Staples @ 6" O.C.
Va= 217

Blocking / Gable Truss Attachment

Nail Gable Truss to Top Plate With:
W/ 10d's @ 12" O.C.
to Top Plate

Project: Brown Residence
Project \# : 2019-07235
Location: Valley County, Idaho
Engineer: $\overline{A R A}$
Checker: $\overline{K J}$

Description:

Y3-2 Shear Wall

Perforated Shear Wall Calculation Sheet:
This spreadsheet is made in conformance to the IBC Chapters 2305-2308 and AFPA's "SDPWS: Lateral Force Resisting Systems".

Shear Wall Forces

Total length of wall
Total length of shear wall
Total length of full height segments
height of shear wall
Maximum opening height
Total Wind force at top of wall
Self weight
Applied dead load
Prefered OSB thickness
Wall Connected to Concrete
Wall Connected to Truss Heel
Wall Connected to Gable / Drag Truss or Rim

Shearwall segments

Unit Base Shear
$\%_{\text {fh }}=L_{w} / L=$
$\%_{o h}=H^{\prime} / \mathrm{H}=$
SCAF
CAF
$v_{\text {base }}=V_{1} / L_{w}=$
OTM $=\square 13,118 \mathrm{lb} \mathrm{ft}$
Percent of full height segments
Percent of maximum opening height
Shear capacity adjustment factors (NDS SDPWS Table)
Unit base shear
Effective unit base shear
Overturning moment of total length of wall
Shear wall adjustment factor

T = Not Req'd lbs

OSB Wall Sheathing attachment

Provide: 7/16" OSB W/ 8d Nails @ 6" O.C.
$\mathrm{Va}=336$

Provide: 7/16" OSB W/ 1½ 16 Gage Staples @ 6" O.C.
$V a=217$

Project: Brown Residence
Project \# : 2019-07235
Location: Valley County, Idaho
Engineer: $\overline{A R A}$
Checker: $\overline{K J}$

Description:

X1-1 Shear Wall

Perforated Shear Wall Calculation Sheet:
This spreadsheet is made in conformance to the IBC Chapters 2305-2308 and AFPA's "SDPWS: Lateral Force Resisting Systems".

Total length of wall
Total length of shear wall
Total length of full height segments
height of shear wall
Maximum opening height
Total Wind force at top of wall
Self weight
Applied dead load
Prefered OSB thickness
Wall Connected to Concrete
Wall Connected to Truss Heel
Wall Connected to Gable / Drag Truss or Rim

Shearwall segments

Type
Misc

Shear Transfer to Concrete:

1/2 Anchor Bolts @ 72 " O.C. (2) Minimum

OSB Wall Sheathing attachment
Provide: 7/16" OSB W/ 8d Nails @ 6" O.C.
Percent of full height segments
Percent of maximum opening height
Shear capacity adjustment factors (NDS SDPWS Table)
Unit base shear
Effective unit base shear Overturning moment of total length of wall

Provide: 7/16" OSB W/ 1½ 16 Gage Staples @ 4" O.C.

Project: Brown Residence
Project \# : 2019-07235
Location: Valley County, Idaho
Engineer: $\overline{A R A}$
Checker: $\overline{K J}$

Description:

X2-1 Shear Wall

Perforated Shear Wall Calculation Sheet:
This spreadsheet is made in conformance to the IBC Chapters 2305-2308 and AFPA's "SDPWS: Lateral Force Resisting Systems".

	59.00 ft	Total length of wall
L =	59.00 ft	Total length of shear wall
$\mathrm{L}_{\mathrm{w}}=$	39.50 ft	Total length of full height segments
$\mathrm{H}=$	9.00 ft	height of shear wall
$\mathrm{H}^{\prime}=$	9.00 ft	Maximum opening height
$\mathrm{V}_{1}=$	2885 lbs	Total Wind force at top of wall
$\mathrm{W}_{\mathrm{DL} \text { self }}=$	107.82 plf	Self weight
$\mathrm{W}_{\text {DL above }}=$	68.00 plf	Applied dead load
	7/16 in	Prefered OSB thickness
	Y y/n	Wall Connected to Concrete
	$y \mathrm{y} / \mathrm{n}$	Wall Connected to Truss Heel
	$y \mathrm{y} / \mathrm{n}$	Wall Connected to Gable / Drag Truss or Rim
Unit Base Shear		
$\%_{\text {fh }}=L_{\text {w }} / \mathrm{L}=$	0.669	Percent of full height segments
$\%_{\text {oh }}=\mathrm{H}^{\prime} / \mathrm{H}=$	1.000	Percent of maximum opening height
SCAF =	0.60	Shear capacity adjustment factors (NDS SDPWS Table)
$\mathrm{v}_{\text {base }}=\mathrm{V}_{1} / \mathrm{L}_{\mathrm{w}}=$	73 plf	Unit base shear
$\mathrm{v}_{\text {req }}=\mathrm{v}_{\text {base }} /$ SUAF	121 plf	Effective unit base shear
OTM $=$	43,124 lb ft	Overturning moment of total length of wall
Shear wall adjustment factor		
$\begin{aligned} \mathrm{RM} & = \\ \mathrm{r} & = \\ \mathrm{C}_{\mathrm{o}} & = \end{aligned}$	306,015 lb ft	Resisting moment of total length of wall
	0.6695	
	0.6020	
	49 plf	Blocking Unit Shear
	121.31	Force Calculated
	2.57 ft	Min Shear Wall Segment

Shearwall segments
3.5

6
6
13
5.5
5.5

T = Not Req'd lbs

Shear Transfer to Concrete:

1/2 Anchor Bolts @ 72 " O.C. (3) Minimum

OSB Wall Sheathing attachment

Provide: 7/16" OSB W/ 8d Nails @ 6" O.C.

Provide: 7/16" OSB W/ 1½ 16 Gage Staples @ 6" O.C.
$V a=217$

Project: Brown Residence
Project \# : 2019-07235
Location: Valley County, Idaho
Engineer: $\overline{A R A}$
Checker: $\overline{K J}$

Description:

X3-1 Shear Wall

Perforated Shear Wall Calculation Sheet:
This spreadsheet is made in conformance to the IBC Chapters 2305-2308 and AFPA's "SDPWS: Lateral Force Resisting Systems".

	26.00 ft	Total length of wall
L =	26.00 ft	Total length of shear wall
$\mathrm{L}_{\mathrm{w}}=$	18.17 ft	Total length of full height segments
$\mathrm{H}=$	9.00 ft	height of shear wall
$\mathrm{H}^{\prime}=$	2.00 ft	Maximum opening height
$\mathrm{V}_{1}=$	2297 lbs	Total Wind force at top of wall
$\mathrm{W}_{\mathrm{DL} \text { self }}=$	107.82 plf	Self weight
$\mathrm{W}_{\text {DL above }}=$	68.00 plf	Applied dead load
	7/16 in	Prefered OSB thickness
	$\mathrm{Y} \mathrm{y} / \mathrm{n}$	Wall Connected to Concrete
	$\mathrm{N} y / \mathrm{n}$	Wall Connected to Truss Heel
	$y \mathrm{y} / \mathrm{n}$	Wall Connected to Gable / Drag Truss or Rim
Unit Base Shear		
$\%_{\text {fh }}=L_{\text {w }} / \mathrm{L}=$	0.699	Percent of full height segments
$\%_{\text {oh }}=\mathrm{H}^{\prime} / \mathrm{H}=$	0.222	Percent of maximum opening height
SCAF =	1.00	Shear capacity adjustment factors (NDS SDPWS Table)
$\mathrm{v}_{\text {base }}=\mathrm{V}_{1} / \mathrm{L}_{\mathrm{w}}=$	126 plf	Unit base shear
$\mathrm{v}_{\text {req }}=\mathrm{v}_{\text {base }} /$ SUAF	126 plf	Effective unit base shear
OTM =	20,677 lb ft	Overturning moment of total length of wall
Shear wall adjustment factor		
$\begin{aligned} \mathrm{RM} & = \\ \mathrm{r} & = \\ \mathrm{C}_{\mathrm{o}} & = \end{aligned}$	59,427 lb ft	Resisting moment of total length of wall
	0.9126	
	1.1116	
	88 plf	Blocking Unit Shear
	126.44	Force Calculated
	2.57 ft	Min Shear Wall Segment

Shearwall segments

Percent of full height segments
Percent of maximum opening height
Shear capacity adjustment factors (NDS SDPWS Table)
Unit base shear
Effective unit base shear
Overturning moment of total length of wall

Resisting moment of total length of wall

Blocking Unit Shear
Force Calculated
Min Shear Wall Segment
$\mathrm{T}=$ Not Req'd lbs

Shear Transfer to Concrete:

1/2 Anchor Bolts @ 72 " O.C. (3) Minimum

OSB Wall Sheathing attachment

Provide: 7/16" OSB W/ 8d Nails @ 6" O.C.

Provide: 7/16" OSB W/ 1½ 16 Gage Staples @ 6" O.C.
$\mathrm{Va}=217$

Blocking / Gable Truss Attachment

Nail Gable Truss to Top Plate With:
W/ 10d's @ 12" O.C.
to Top Plate

Project: Brown Residence
Project \# : 2019-07235
Location: Valley County, Idaho
Engineer: $\overline{A R A}$
Checker: $\overline{K J}$

Description:

X4-1 Shear Wall

Perforated Shear Wall Calculation Sheet:
This spreadsheet is made in conformance to the IBC Chapters 2305-2308 and AFPA's "SDPWS: Lateral Force Resisting Systems".

Shear Transfer to Concrete:

1/2 Anchor Bolts @ 72 " O.C. (3) Minimum

OSB Wall Sheathing attachment

Provide: 7/16" OSB W/ 8d Nails @ 6" O.C.

Shearwall segments

Type
Misc

Description:

Project \# : 2019-07235
Location: Valley County, Idaho
Engineer: $\overline{A R A}$
Checker: KJ

Y1-1 Shear Wall

Perforated Shear Wall Calculation Sheet:
This spreadsheet is made in conformance to the IBC Chapters 2305-2308 and AFPA's "SDPWS: Lateral Force Resisting Systems".

Total length of wall
Total length of shear wall
Total length of full height segments
height of shear wall
Maximum opening height
Total Wind force at top of wall
Self weight
Applied dead load
Prefered OSB thickness
Wall Connected to Concrete
Wall Connected to Truss Heel
Wall Connected to Gable / Drag Truss or Rim

Total length of wall
Total length of shear wall
Total length of full height segments
height of shear wall
Maximum opening height
Total Wind force at top of wall
Seffeight
Applied dead load
Prefered OSB thickness

Wall Connected to Truss Heel
Wall Connected to Gable / Drag Truss or Rim

Strap Tie
Holdown
Hype

Shear Transfer to Concrete:

1/2 Anchor Bolts @ 72 " O.C. (2) Minimum

OSB Wall Sheathing attachment

Provide: 7/16" OSB W/ 8d Nails @ 6" O.C.
Percent of full height segments
Percent of maximum opening height
Shear capacity adjustment factors (NDS SDPWS Table)
Unit base shear
Effective unit base shear
Overturning moment of total length of wall

Provide: 7/16" OSB W/ 1½ 16 Gage Staples @ 6" O.C.
$V a=33$

Va= 217

Description:

Project \# : 2019-07235
Location: Valley County, Idaho
Engineer: $\overline{A R A}$
Checker: K

Y2-1 Shear Wall

Perforated Shear Wall Calculation Sheet:
This spreadsheet is made in conformance to the IBC Chapters 2305-2308 and AFPA's "SDPWS: Lateral Force Resisting Systems".

Total length of wall
Total length of shear wall
Total length of full height segments
height of shear wall
Maximum opening height
Total Wind force at top of wall
Self weight
Applied dead load
Prefered OSB thickness
Wall Connected to Concrete
Wall Connected to Truss Heel
Wall Connected to Gable / Drag Truss or Rim

Total length of wall
Total length of shear wall
height of shear wall
Maximum opening height
Total Wind force at top of wall
weight
Applied dead load
Prefered OSB thickness

Wall Connected to Truss Heel
Wall Connected to Gable / Drag Truss or Rim

Unit Base Shear
$\%_{\text {fh }}=L_{w} / L=$
$\%_{o h}=H^{\prime} / \mathrm{H}=$

=	0.700
=	0.000
SCAF =	1.00
$L_{w}=$	375
sel'SCAF	375
OTM $=$	47,285

Percent of full height segments
Percent of maximum opening height
Shear capacity adjustment factors (NDS SDPWS Table)
Unit base shear
Effective unit base shear
Overturning moment of total length of wall

Shear Transfer to Concrete:

1/2 Anchor Bolts @ 48 " O.C. (6) Minimum

OSB Wall Sheathing attachment

Provide: 7/16" OSB W/ 8d Nails @ 4" O.C.

Provide: 7/16" OSB W/ 1½ 16 Gage Staples @ 3" O.C.
$V a=434$

Project: Brown Residence
Project \#: $\frac{2019-07235}{\text { Location: }}$ Valley County, Idaho
Engineer: ARA
Checker: KJ

Description:

Y3-1 Shear Wall

Perforated Shear Wall Calculation Sheet:
This spreadsheet is made in conformance to the IBC Chapters 2305-2308 and AFPA's "SDPWS: Lateral Force Resisting Systems".

Shear Wall Forces

Total length of wall
Total length of shear wall
Total length of full height segments
height of shear wall
Maximum opening heigh
Total Wind force at top of wall
Self weight
Applied dead load
Prefered OSB thickness
Wall Connected to Concrete
Wall Connected to Truss Heel Wall Connected to Gable / Drag Truss or Rim

Shearwall segments

Type
Misc

Shear Transfer to Concrete:

1/2 Anchor Bolts@72" O.C. (7) Minimum

OSB Wall Sheathing attachment

Provide: $7 / 16 "$ OSB W/ 8d Nails @ 6" O.C.	Va=	336
Provide: $7 / 16 "$ OSB W/ 11⁄2 16 Gage Staples @ 4" O.C.	Va=	322

Gyp Board Wall Sheathing attachment

Percent of full height segments
Percent of maximum opening height Shear capacity adjustment factors (NDS SDPWS Table) Unit base shear
Effective unit base shear
Overturning moment of total length of wall

Shear wall adjustment factor
RM = 111,414 lb ft Resisting moment of total length of wall

r=	0.9158
$\mathrm{C}_{0}=$	0.8810
	201 plf

Force Calculated
Min Shear Wall Segment

Blocking / Gable Truss Attachment

Nail Gable Truss to Top Plate With:
W/ 10d's @ 6" O.C.
to Top Plate

Project: Brown Residence
Project \# : 2019-07235
Location: Valley County, Idaho
Engineer: $\overline{A R A}$
Checker: $\overline{K J}$

Description:

Y4-1 Shear Wall

(2 PANELS)

Perforated Shear Wall Calculation Sheet:
This spreadsheet is made in conformance to the IBC Chapters 2305-2308 and AFPA's "SDPWS: Lateral Force Resisting Systems".

Shear Wall Forces

Total length of wall
Total length of shear wall
Total length of full height segments
height of shear wall
Maximum opening height
Total Wind force at top of wall
Self weight
Applied dead load
Prefered OSB thickness
Wall Connected to Concrete
Wall Connected to Truss Heel
Wall Connected to Gable / Drag Truss or Rim

Total length of wall

Unit Base Shear

$\%_{\text {fh }}=L_{\text {w }} / \mathrm{L}=$	1.000
$\%_{\text {oh }}=\mathrm{H}^{\prime} / \mathrm{H}=$	0.000
SCAF =	1.00
$\mathrm{V}_{\text {base }}=\mathrm{V}_{1} / \mathrm{L}_{\mathrm{w}}=$	751
$\mathrm{v}_{\text {req }}=\mathrm{v}_{\text {base }} /$ SCAF	751
OTM =	13,513

Percent of full height segments
Percent of maximum opening height
Shear capacity adjustment factors (NDS SDPWS Table)
Unit base shear
Effective unit base shear
Overturning moment of shortest panel

Shear wall adjustment factor

$\begin{array}{r} \mathrm{RM}= \\ \mathrm{r}= \\ \mathrm{C}_{0}= \end{array}$	352	Resisting moment of shortest panel
	1.0000	
	1.0000	
	214 plf	Blocking Unit Shear
	750.70	Force Calculated
	1.33 ft	Min Shear Wall Segment

$\mathrm{T}=3500$	lbs	Holdown Simpson HDU5	Ta	Type
		OR:	5645	Holdown
			3695	Strap Tie

Portal Frame
Provide: (2) Eng. APA Portal Frame Va=2254\# EA. 4508\# Total

Blocking / Gable Truss Attachment

