

Structural Calculations

Project Title: Glasby House Address: 13148 Farm to Market Rd Location: Valley County, Idaho

Job #: 2023-4981

 $G C_{pi}$ = product of gust effect factor and internal pressure coefficient.(Tab. 26.13-1, Enclosed Building, page 271) = 0.18 or -0.18

= 0.18 or -0.18 a = width of edge strips, Fig 28.3-1, page 312, MAX[MIN(0.1B, 0.1L, 0.4h), MIN(0.04B, 0.04L), 3] =

3.40 ft

	Roof ang	leq=	18.43	Roof ar	ngle q =	18.43						
Surface	<u> </u>	Net Pre	ess. W/	6.6	Net Press. W/							
	GC _{pf}	(+GC _{pi})	(-GC _{pi})	GC _{pf}	(+GC _{pi})	(-GC _{pi})						
1	0.52	8.62	17.84	-0.45	-16.14	-6.92						
2	-0.69	-22.29	-13.06	-0.69	-22.29	-13.06						
3	-0.47	-16.61	-7.39	-0.37	-14.09	-4.87						
4	-0.42	-15.25	-6.03	-0.45	-16.14	-6.92						
5				0.40	5.64	14.86						
6				-0.29	-12.04	-2.82						
1E	0.78	15.37	24.60	-0.48	-16.91	-7.68						
2E	-1.07	-32.02	-22.80	-1.07	-32.02	-22.80						
3E	-0.67	-21.86	-12.64	-0.53	-18.19	-8.97						
4E	-0.62	-20.44	-11.22	-0.48	-16.91	-7.68						
5E				0.61	11.01	20.24						
6E				-0.43	-15.63	-6.40						

Net Pressures (psf), Basic Load Cases

Net Pressures (psf), Torsional Load Cases

Net Tressures (per,) Terstenar Load									
	Roof ar	ngle q =	18.43						
Surface	6.6	Net Pre	ess. W/						
	GC _{pf}	(+GC _{p i})	(-GC _{pi})						
1T	0.52	2.15	4.46						
2T	-0.69	-5.57	-3.27						
3T	-0.47	-4.15	-1.85						
4T	0.00	-3.81	-1.51						
	Roof angle q = 0.00								
Surface	<u> </u>	Net Press. W/							
	GCpf	$(+GC_{pi})$	(-GC _{pi})						
5T	0.40	1.41	3.71						
6T	-0.29	-3.01	-0.70						
· · _ · _ · _ · _ · _ · _ ·									
+ / - Wind Pressure 64%									
· ·									

SNAKE RIVER ENGINEERING	524 CLEVELAND BLVD. #23 CALDWELL, IDAHO 83605 (208) 453-6512			Completed by: T[Review/Check: Kł)S (J	Pro SRI City	oject Name: Glasby Hou E Project #: 2023-4981 y and State: Valley Cou	use nty, Idaho		
			OSB SEISN	AIC LOADING A	NA	LYSIS				
		IBC	/ ASCE 7: Equ	ivalent Lateral Force (ELF)	Procedu	re:			
INPUT DA	ATA			DE	SIG	N SUM	MARY			
Typical floor height:	h =	12	ft	$C_{s} = 1.2 * S_{DS} / (R / I_{e})$	=	0.0870		<= Applicable		
Typical floor weight:	w _x =	20.8	kips	Period Parameter, x	=	0.75	, ASCE Tab 12.8-2			
Number of floors:	n =	1		Period: $T_a = C_t (h_n)^x$	=	0.23	sec, ASCE 12.8.2.1			
Importance factor (ASCE 11.5.1):	$I_e =$	1.00		$C_{s} < S_{D1} / [(R / I_{e}) T_{a}]$	=	0.1502	, ASCE Tab 12.8.1.1	<= Not Applicable		
Design spectral response:	S _{DS} =	0.47	g	$C_{s} > 0.044 \ S_{DS} I_{e}$	=	0.0207	, ASCE Tab 12.8.1.1	<= Not Applicable		
	S _{D1} =	0.22	g	$C_s > 0.5 S_1 / (R / I_e)$	=	0.0117	, ASCE Tab 12.8.1.1	<= Not Applicable		
Mapped spectral resp.: Period Parameter, C _t :	S ₁ =	0.15	g	k	=	1.36	, (ASCE 12.8.3, page 9	1)		
(ASCE Tab 12.8-2):	C _t =	0.020		$V = C_s W$	= (0.0870	W			
Resp. coefficient: (ASCE										
Tab. 12.2.1):	R =	6.5		0.7 * V	= (0.0609	W			
Seismic design category:	SDC =	D								
	h _n =	25.6	ft	W	=	21	kips, total			
$w_{1,seismic} = MAX(0.4)$ Where : W_{p} =	$W_{1,seismic} = MAX \left(0.4I_{S_{DS}}W_{p} , 0.1W_{p} \right) = 0.2 W_{p} = 0.2 \text{ psf} <= USE \text{ FOR DIAPHRAGMS}$ Where : $W_{p} = 1.0 \text{ psf}$, $I_{e} = 1.00$ (CBC / IBC Tab. 1604.5 & ASCE 7 Tab. 15-2)									
	<u>For s</u>	(eismic d	Dut-of-plane s design catego	seismic force for ancho ry A & B, any diaphrag	orage (m (A	e design ASCE 7 Se	ec. 12.11.2)			
$F_{anch,seismic} = MAX \begin{bmatrix} 0.5 \end{bmatrix}$ Where : Fmin	4 <i>S_{DS}I</i> =	$\frac{1}{W_p} \frac{h}{m}$	$\left(\frac{p+h_p}{2h}\right)^2$,	$0.1W_{p} \frac{\left(h + h_{p}\right)^{2}}{2h}$ 2.01 W _p = 188	, 41	$00S_{DS}I$ lf (Horizo	$\left[F_{\min} \right] =$	licable		
(ASCE 7	Sec. 12	.11.2 &	11.7.3)	p	Ŀ.		·····, ·····			
<u>For</u>	seismic	design	category C ar	nd above, flexible diap	hrag	gm (ASCE	7 Sec. 12.11.2.1)			
$F_{anch,seismic} = MAX \left[0.8S_{DS}IW_{p} \frac{\left(h+hp\right)^{2}}{2h} , 0.1W_{p} \frac{\left(h+hp\right)^{2}}{2h} , 400S_{DS}I , F_{min} \right] =$										
= 4.02	W _p =	188	plf (Horizon	tal) <= Applicable						
			For conne	ections (ASCE 7 Sec. 12	.11.2	<u>2.1)</u>				
F _{conn,seismic} = MAX [0.2	133 S _{DS}	w _p ,0	0.5 w _p] =	0.5 W _p = 0.	5 pl	lf (Horizo	ontal)			

WIND / SEISMIC SHEAR FORCE CALCULATIONS:

From ASCE 7-16 Wind & Seismic Loading Analysis

		Rc	of / Flo	or			Wall			Load above					Loadin	g	
Wall Line	Wind Force (psf)	Diaph. Weight	Wr, We truss trib (ft)	Area W (ft)	Area L (ft)	Wind Force (psf)	Wall DL (psf)	Wall ht (ft)	wall line dist (ft)	Upr. Flr Wall ht (ft)	Wind (#)	Seismic (#)	*C _s (Wp)	=	Wind Force (kips)	Seismic Force (kips)	Lateral Control
X1-2	9.6	47	7.2	15.0	34.0	17.6	12.0	8.0	15.0				0.06	=	1.04	0.82	Wind
X1-1	0.0	18	0.0	36.0	34.0	15.7	12.0	9.0	36.0	7.0	1.04	0.82	0.06	=	4.29	1.72	Wind
X2-1	9.6	47	13.6	36.0	34.0	15.7	12.0	12.0	36.0	0.0	0	0	0.06	=	4.04	2.07	Wind
Y1-1	9.6	47	13.6	34.0	36.0	15.8	12.0	12.0	34.0	0	0	0	0.06	=	3.82	2.05	Wind
Y2-1	9.6	47	13.6	34.0	36.0	15.8	12.0	12.0	34.0	0	0	0	0.06	=	3.82	2.05	Wind

SH	EAR WAL	L CALCUL	ATIONS:			
	X1-2	X1-1	X2-1	Y1-1	Y2-1	
	Shear	· Wall Forces	1			
Total length of wall	18.33 ft	28.00 ft	28.00 ft	36.00 ft	36.00 ft	
Total length of shear wall L =	18.33 ft	28.00 ft	2.29 ft	23.83 ft	19.90 ft	
Total length of full ht seg. $L_w =$	11.50 ft	14.00 ft	2.29 ft	16.92 ft	19.90 ft	
height of shear wall H =	8.00 ft	9.00 ft	8.00 ft	12.00 ft	12.00 ft	
Maximum opening height H' =	6.00 ft	2.00 ft	0.00 ft	6.67 ft	0.00 ft	
Total force at top of wall $V_1 =$	1043 lbs	4288 lbs	2020 lbs	3823 lbs	3823 lbs	
Self weight $W_{DL self} =$	flq 69	108 plf	96 plf	144 plf	144 plf	
Applied dead load W _{DL above} =	40 plf	40 plf	40 plf	261 plf	261 plf	
Prefered OSB thickness in	7/16	7/16	7/16	7/16	7/16	
Prefered Gvp thickness in	1/2	1/2	1/2	1/2	1/2	
Wall Connected to Concrete $y/n =$	N	-/- Y	/ Y	Y	Y	
	Shoarl	Nall Sogmon				
	5 75	3 50	2 29	3 50	19 90	
	5.75	3 50	2.25	8.67	10.00	
	5.75	4.00		4.75		
		3.00		+./J		
		5.00				
			1			
	Shear Tra	nsfer to Conc	rete			
T=	Not Req'd	274 lbs	6963 lbs	Not Req'd	Not Req'd	
		72 '' O.C.	72 '' O.C.	72 '' O.C.	72 '' O.C.	
Provide:		Code Min.	Code Min.	Code Min.	Code Min.	
Min # of 1/2 Anchor Bolts		(5) Min	(2) Min	(4) Min	(4) Min	
Load From Above	0.00	0.00	0.00	0.00	0.00	
		Perp. Wall	HD4			
	Shear R	esisting Syste	em			
Force Calculated	132.90	306.25	882.01	269.70	192.13	
	OSB	OSB	OSB	OSB	OSB	
Min Shear Wall Segment:	2.29 ft	2.57 ft	2.29 ft	3.43 ft	3.43 ft	
Provide: Va=	SW1	SW1	SW4	SW1	SW1	
Min Shear Wall Segment:						
Provide: Va=						
PI	ocking / Nailir	a Framina A	tachmont			
Blocking Unit Shear	57 nlf	153 nlf	144 plf	106 nlf	106 nlf	
Blocking			NONE			
Nailing		T1				
	SEC SCILED		See Serieb	See Series	See Series	
0/affill haight converts 0/fb = 1/l =	Unit	Base Shear	1.000	0.710	1 000	
~ 0 or run neight segments $\sim 1 - L_w/L =$	0.027	0.500	1.000	0.710	1.000	
Shear can adi factor	0.750	1.00	1.000	0.350	1.000	
Unit has shear vbase $V_4/L_{m} =$	91 nlf	306 nlf	882 nlf	226 nlf	192 nlf	
Effective unit base shear vreq=v _{hace} /SCAF=	133 plf	306 plf	882 nlf	270 plf	192 plf	
Ovrtrn. mo. Ttl. length of wall OTM =	12.2 k-ft	38.6 k-ft	16.2 k-ft	54.8 k-ft	45.9 k-ft	
-	Ch "	a altreature of the	t			
Posist moment total L of well PM -	Shear wall	adjustment f	actor	114064	001LF	
	22.8 K-IL	57.9 K-IL	0.4 K-TT 1 0000	0 8150	δυ.1 K-π 1 0000	
 C_=	0.0910	1 2000	1 0000	0.8130	1 0000	
ະບົ	0.0022	1.2000	1.0000	0.0370	1.0000	

House, Outlookers 1 piece(s) 2 x 6 DF No.2 @ 24" OC

Overall Length: 4' 9"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1533 @ 2' 1 1/4"	3281 (3.50")	Passed (47%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	643 @ 1' 6"	1139	Passed (56%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	-959 @ 2' 1 1/4"	975	Passed (98%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.137 @ 4' 9"	0.265	Passed (2L/464)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.156 @ 4' 9"	0.353	Passed (2L/408)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180)

• Overhang deflection criteria: LL (2L/240) and TL (2L/180).

• Right cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

-330 lbs uplift at support located at 5 1/2". Strapping or other restraint may be required.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Hanger on 5 1/2" DF beam	5.50"	Hanger ¹	1.50"	-29	52/-302	24/-330	See note 1
2 - Stud wall - DF	3.50"	3.50"	1.64"	190	1343	1533	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	4' 4" o/c						
Bottom Edge (Lu)	1' 11" o/c						

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie										
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories				
1 - Face Mount Hanger	LU26	1.50"	N/A	6-10dx1.5	4-10dx1.5					

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 4' 9"	24"	17.0	120.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Trevor Steelsmitt04/14/23
 Snake River Engineering

 (208) 453-6512
 trevor@snakeriverengineering.com

House, RB1 1 piece(s) 6 x 10 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3097 @ 4"	18906 (5.50")	Passed (16%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2053 @ 1' 3"	6810	Passed (30%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	4757 @ 3' 8 1/2"	6937	Passed (69%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.066 @ 3' 8 1/2"	0.338	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.076 @ 3' 8 1/2"	0.450	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.

• Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	5.50"	5.50"	1.50"	427	2670	3097	Blocking
2 - Stud wall - DF	5.50"	5.50"	1.50"	427	2670	3097	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	7' 5" o/c				
Bottom Edge (Lu)	7' 5" o/c				
Maximum allowable bracing intervals based on applied load					

Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 7' 5"	N/A	13.2		
1 - Uniform (PSF)	0 to 7' 5" (Front)	6'	17.0	120.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job
Trevor Steelsmith04/14/23	
Snake River Engineering	
(208) 453-6512	
trevor@snakeriverengineering.com	

House, Side Roof Rafters 1 piece(s) 2 x 8 DF No.2 @ 16" OC

Sloped Length: 10' 3 5/16"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	486 @ 9' 5 1/2"	1406 (1.50")	Passed (35%)		1.0 D + 1.0 S (Alt Spans)
Shear (lbs)	579 @ 4' 3/8"	1501	Passed (39%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	-959 @ 3' 2 3/4"	1564	Passed (61%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.130 @ 0	0.340	Passed (2L/628)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.140 @ 0	0.454	Passed (2L/584)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 4/12

Member Length : 10' 2 1/16"

• Deflection criteria: LL (L/240) and TL (L/180).

• Overhang deflection criteria: LL (2L/240) and TL (2L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Beveled Plate - DF	5.50"	5.50"	1.50"	172	1149	1320	Blocking
2 - Hanger on 7 1/4" DF beam	3.50"	Hanger ¹	1.50"	61	478	539	See note 1

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Bracing Intervals	Comments
10' o/c	
10' o/c	
	Bracing Intervals 10' o/c 10' o/c

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
2 - Face Mount Hanger	LRU26Z	1.94"	N/A	4-10dx1.5	5-10d				
Pafer to manufacturer notes and instructions for proper installation and use of all connectors									

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 9' 9"	16"	17.0	120.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Trevor Steelsmitt04/14/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com

Job Notes

4/12/2023 9:29:49 PM UTC Page 10 of 42 ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 2981 Glasby Page 4 / 9

House, Upper Floor: Joist 1 piece(s) 14" TJI ® 360 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	212 @ 4' 3 1/2"	1080 (1.75")	Passed (20%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	212 @ 4' 3 1/2"	1955	Passed (11%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	217 @ 2' 3"	7335	Passed (3%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.003 @ 2' 3"	0.102	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.004 @ 2' 3"	0.204	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	70	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.75"	54	180	234	Blocking
2 - Hanger on 14" DF beam	3.50"	Hanger ¹	1.75" / - 2	56	187	243	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 4" o/c	
Bottom Edge (Lu)	4' 4" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
2 - Face Mount Hanger	IUS2.37/14	2.00"	N/A	12-10dx1.5	2-Strong-Grip			
	1032.37/14	2.00	IN/A	12-100x1.5	2-30 orlg-Grip			

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 4' 7"	24"	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Trevor Steelsmitf 04/14/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com		v

House, Crawl Beams 1 piece(s) 4 x 10 DF No.2

Overall Length: 3' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	853 @ 2"	7656 (3.50")	Passed (11%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	347 @ 1' 3/4"	3885	Passed (9%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	629 @ 1' 9 1/2"	4492	Passed (14%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.002 @ 1' 9 1/2"	0.081	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.003 @ 1' 9 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories	
1 - Stud wall - DF	3.50"	3.50"	1.50"	208	645	853	Blocking	
2 - Stud wall - DF	3.50"	3.50"	1.50"	208	645	853	Blocking	
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 7" o/c	
Bottom Edge (Lu)	3' 7" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 7"	N/A	8.2		
1 - Uniform (PSF)	0 to 3' 7" (Front)	9'	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Trevor Steelsmith04/14/23	
Snake River Engineering	
(208) 453-6512	
trevor@snakeriverengineering.com	

House, Main Floor: Joist 1 piece(s) 9 1/2" TJI ® 110 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	498 @ 9' 9 1/2"	910 (1.75")	Passed (55%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	498 @ 9' 9 1/2"	1220	Passed (41%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	1194 @ 5'	2500	Passed (48%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.092 @ 5'	0.240	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.119 @ 5'	0.479	Passed (L/963)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	46	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.75"	120	400	520	Blocking
2 - Hanger on 9 1/2" DF beam	3.50"	Hanger ¹	1.75" / - 2	122	407	529	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 7" o/c	
Bottom Edge (Lu)	9' 10" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
2 - Face Mount Hanger	IUS1.81/9.5	2.00"	N/A	8-10dx1.5	2-Strong-Grip				

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 10' 1"	24"	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Trevor Steelsmitt 04/14/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com		Weyerhaeuser

House, Deck Joist 1 piece(s) 2 x 8 DF No.2 @ 16" OC

Overall Length: 11' 10 1/2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1130 @ 5' 5 1/4"	2231 (3.50")	Passed (51%)		1.0 D + 1.0 S (Adj Spans)
Shear (lbs)	434 @ 4' 8 1/4"	1501	Passed (29%)	1.15	1.0 D + 1.0 S (Adj Spans)
Moment (Ft-lbs)	-584 @ 5' 5 1/4"	1564	Passed (37%)	1.15	1.0 D + 1.0 S (Adj Spans)
Live Load Defl. (in)	0.019 @ 2' 7 9/16"	0.129	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.021 @ 2' 7 7/16"	0.257	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

• No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Hanger on 7 1/4" DF beam	3.50"	Hanger ¹	1.50"	36	385	421	See note 1
2 - Stud wall - SPF	3.50"	3.50"	1.77"	101	1029	1130	None
3 - Stud wall - DF	3.50"	3.50"	1.50"	53	553	606	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	11' 7" o/c				
Bottom Edge (Lu)	11' 7" o/c				
-Maximum alloughte breezing intervals based on applied land					

Maximum allowable bracing intervals based on applied load

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
1 - Face Mount Hanger	LU26	1.50"	N/A	6-10dx1.5	4-10dx1.5				
 Defer to manufacturer notes and instructions for proper installation and use of all connectors 									

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 11' 10 1/2"	16"	12.0	120.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Trevor Steelsmitt 04/14/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com	

4/12/2023 9:29:49 PM UTC Page 14 of 42 ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 2981 Glasby

Page 8 / 9

House, DECK BEAM 1 1 piece(s) 6 x 8 DF No.2

Overall Length: 27' 11 1/2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5297 @ 7' 6 1/4"	18906 (5.50")	Passed (28%)		1.0 D + 1.0 S (Adj Spans)
Shear (lbs)	2141 @ 6' 8"	5376	Passed (40%)	1.15	1.0 D + 1.0 S (Adj Spans)
Moment (Ft-lbs)	-3257 @ 7' 6 1/4"	3706	Passed (88%)	1.15	1.0 D + 1.0 S (Adj Spans)
Live Load Defl. (in)	0.058 @ 4' 5/8"	0.161	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.064 @ 4' 1/2"	0.323	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Overhang deflection criteria: LL (2L/480) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	5.50"	5.50"	1.50"	273	2448	2720	Blocking
2 - Stud wall - DF	5.50"	5.50"	1.54"	531	4766	5297	Blocking
3 - Stud wall - DF	5.50"	5.50"	1.50"	446	4261	4707	Blocking
4 - Stud wall - DF	5.50"	5.50"	1.54"	531	4766	5297	Blocking
5 - Stud wall - DF	5.50"	5.50"	1.50"	273	2448	2720	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	28' o/c					
Bottom Edge (Lu)	28' o/c					

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 27' 11 1/2"	N/A	10.4		
1 - Uniform (PSF)	0 to 27' 11 1/2" (Front)	5' 3"	12.0	120.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Trevor Steelsmitt**04/14/23** Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com Job Notes

Beam Calculations

	A deltate and Delfa	D f	El se s	Deals	14/-11	Tetal Land		
	Additional Drift	ROOI	FIOOT	Deck	vvali	TOLATLOAD	Tota	Load
Trib	0.0	20.125	9	0	5.33			
							2.20	1
Dead Load	-	342.1	108.0	0.0	64.0	514.1 plf	3,285	0.1 pij
Live / Snow Load	0	2415.0	360.0	0.0	-	2,775.0 plf		
-								
			-				r	-
Description:	3.5 ft Opening							
Header Callout	(2)9-1/4"							
	LVL 2.0E							
	(2) 2x6							
Trimmers	DF-L No. 2							
	(1) 2x6							
King Studs	DE-L No. 2							
	DI ENO. 2							
Wood Design								
Species	LVL							
Grade	2.0E							
Width	3.50 in							
Denth	9.25 in							
	5.25 11							
Reaction								
Dead Load	900 lbs							
Live Load	4,856 lbs			l	l		l	
	,							
load								
	25.0							
lu	3.5 ft							ļ
le	7.2 ft							
Adjustment Factors								
Cd	1.15							
CF	1.1							
Material Properties								
Fb	2.900 psi							
Ev	285 nsi							
	200 000 mci							
E	2,000,000 psi							
Emin	1,016,535 psi							
Calculated Prop.								
А	32.38 in^2							
I	230.84 in^4							
s	49.91 in^3							
RB	8.08							
Emin'	1,016,535 psi			1	1			
FbE	18,672 psi							
Fb*	3,669 nsi							
сі.	1							
62	-	1		1	1		1	
Shear and Moment								
NA	60 127 lh in							
141	5 756 lbc							
v	3,730 105	1	l .	l	1		l	
Strong								
507635 fk	1 211 pci							
10 55'	2.625 pci							
רט fh/ch!	3,023 µsi							
10/FD	0.00							
tv Evi	267 psi							
FV E. /F. I	328 psi							
TV/FV	0.81							
Max Ratio	0.81							
	Pass							
Deflection								
	0.02 in			1	1			
Διι	0.02 10							
	L/1,/46							
Διι	0.02 in							
	L/2,070							
	Pass							

Beam Calculations

	-							
	Additional Drift	Poof	Floor	Dock	W/all	Total Load		
	Additional Drift	NOOI	11001	Deek	wan	Total Loud	Total	Load
Trib	0.0	17.125	9	0	5.33			
							2.070	2.1 m/f
Dead Load	-	291.1	108.0	0.0	64.0	463.1 plf	2,870	5.1 pij
Live / Snow Load	0	2055.0	360.0	0.0	-	2,415.0 plf		
-								
Description	6.2 ft Opening							
Description.	0.5 Jt Opening							
-								
	(3)9-1/4"							
Header Callout	LVL 2.0E							
	(2) 2C							
Trimmers	(2) 2Xb							
	DF-L No. 2							
King Stude	(2) 2x6							
King Studs	DF-L No. 2							
Wood Design								
Species	LVL							
Grade	2.0E							
Width	5.25 in							
Denth	9 25 in							
Deptil	3.23 111	1	1	1	1		1	
Reaction								
Dood I!	1 117 lbc							
Deau Load	1,999/ IUS							
Live Load	7,547 IDS	ļ	<u> </u>	ļ	ļ		ļ	
Load								
lu	6.3 ft							
	12.5.ft							
	12.5 jt							
Adjustment Factors								
Cd	1.15							
CF	1.1							
L			•					
Material Properties								
, Fb	2.900 psi							
Ev	29E pci							
	205 p3i							
E	2,000,000 psi							
Emin	1,016,535 psi							
Calculated Prop.								
	40 EC in 40							
A	48.50 111-2							
1	346.26 in^4							
S	74.87 in^3							
RB	7.10							
Emin'	1,016,535 psi							
FbE	24,232 psi							
Fb*	3,669 psi							
CI I	1							
	-	1		1	1	I	1	
Shoar and Marrat								
sneur unu woment	100 000 !! .							
м	168,638 lb-in							
v	8,994 lbs							
Stress		l						
fb	2,252 psi							
Fb'	3,636 psi							
fb/Fb'	0.62							
fv	278 psi							
Fv'	328 psi						1	
fv/Fv'	0.85						1	
May Patio	0.05							
IVIAX NALIO	0.65							
	Pass							
Deflection								
	014:-							
ΔTL	0.14 IN							
	L/526							
Διι	0.12 in							
	L/626							
	Pass							

Beam Calculations Additional Drift Roof Floor Deck Wall Total Load Total Load Tril 0.0 5.75 0 0 5.33 851.7 plf Dead Loa 97.8 0.0 0.0 64.0 161.7 plf Live / Snow Load 690.0 0.0 0.0 690.0 p Description: 9.7 ft Opening (2)9-1/4" Header Callou LVL 2.0E (2) 2x6 Trimmer DF-L No. 2 (2) 2x6 King Stude DF-L No. Wood Design Species LVL Grade 2.0E Width 3.50 in Depth 9.25 in Reaction 782 lbs Dead Load Live Load 3,336 lbs Load lu 9.7 ft le 18.1 ft Adjustment Factors Cd 1.15 CF 1.1 Material Properties Fb 2,900 psi Fv 285 psi 2,000,000 psi F 1,016,535 psi Emin Calculated Prop. Α 32.38 in^2 230.84 in^4 49.91 in^3 ς 12.80 RB Emin' 1,016,535 psi FbE 7,448 psi Fb* 3,669 psi CL 1 Shear and Moment М 119,464 lb-in v 4,118 lbs Stress fb 2,394 psi Fb' 3,512 psi fb/Fb' 0.68 fv 19<u>1 ps</u>i Fv' 328 psi fv/Fv 0.58 Max Ratio 0.68 Pass Deflection Δtl 0.36 in L/320 Διι 0.29 in L/395

Pass

Beam Calculations

Additional Drift Roof Floor Deck Wall Total Load Total Load Tril 0.0 20 9 0 5.33 3,272.0 plf 108.0 Dead Loa 340.0 0.0 64.0 512.0 plf Live / Snow Load 2400.0 360.0 0.0 .760.0 p Description: 3.0 ft Opening 3.5 ft Opening (2)9-1/4" (2)9-1/4" Header Callou LVL 2.0E LVL 2.0E (2) 2x6 (2) 2x6 Trimmer DF-L No. 2 DF-L No. 2 (1) 2x6 (1) 2x6 King Stude DF-L No. DF-L No. 2 Wood Design LVL LVL Species Grade 2.0E 2.0E Width 3.50 in 3.50 in Depth 9.25 in 9.25 in Reaction 768 lbs 896 lbs Dead Load Live Load 4,140 lbs 4,830 lbs Load lu 3.0 ft 3.5 ft le 6.2 ft 7.2 ft Adjustment Factors Cd 1.15 1.15 CF 1.1 1.1 Material Properties Fb 2,900 psi 2,900 psi Fv 285 psi 285 psi 2,000,000 psi 2,000,000 psi 1,016,535 psi 1,016,535 psi Emin Calculated Prop. Α 32.38 in^2 32.38 in^2 230.84 in^4 230.84 in^4 49.91 in^3 49.91 in^3 ς 7.48 8.08 RB Emin' 1,016,535 psi 1,016,535 psi FbE 21,784 psi 18,672 psi Fb* 3,669 psi 3,669 psi CL 1 1 Shear and Moment Μ 44,171 lb-in 60,122 lb-in v 4,908 lbs 5,726 lbs Stress fb 885 psi 1,205 psi Fb' 3,632 psi 3,625 psi fb/Fb' 0.24 0.33 fv 227 psi 265 psi Fv' 328 psi 328 psi fv/Fv 0.69 0.81 Max Ratio 0.69 0.81 Pass Pass Deflection Δtl 0.01 in 0.02 in L/2,787 L/1,755 Διι 0.01 in 0.02 in

L/3,304

Pass

L/2,081

Pass

Beam Calculations Additional Drift Roof Floor Deck Wall Total Load Total Load Tril 0.0 17 0 0 5.33 2,393.0 plf Dead Loa 289.0 0.0 0.0 64.0 353.0 plf Live / Snow Load 2040.0 0.0 0.0 2.040.0 p Description: 6.3 ft Opening 10.5 ft Opening (3)9-1/4" (3)14" Header Callou LVL 2.0E LVL 2.0E (2) 2x6 (3) 2x6 Trimmer DF-L No. 2 DF-L No. 2 (2) 2x6 (2) 2x6 King Stude DF-L No. DF-L No. 2 Wood Design LVL LVL Species Grade 2.0E 2.0E Width 5.25 in 5.25 in Depth 9.25 in 14.00 in Reaction 1,103 lbs 1.853 lbs Dead Load Live Load 6,375 lbs 10,710 lbs Load lu 6.3 ft 10.5 ft le 12.5 ft 20.6 ft Adjustment Factors Cd 1.15 1.15 CF 1.1 1 Material Properties Fb 2,900 psi 2,900 psi Fv 285 psi 285 psi 2,000,000 psi 2,000,000 psi 1,016,535 psi 1,016,535 psi Emin Calculated Prop. Α 48.56 in^2 73.50 in^2 346.26 in^4 1,200.50 in^4 74.87 in^3 171.50 in^3 ς 7.10 11.21 RB Emin' 1,016,535 psi 1,016,535 psi FbE 24,232 psi 9,708 psi Fb* 3,669 psi 3,335 psi CL 1 1 Shear and Moment Μ 140,213 lb-in 395,736 lb-in v 7,478 lbs 12,563 lbs Stress fb 1,873 psi 2,307 psi Fb' 3,636 psi 3,253 psi fb/Fb' 0.52 0.71 fv 231 psi 256 psi Fv' 328 psi 328 psi fv/Fv 0.70 0.78 Max Ratio 0.70 0.78 Pass Pass Deflection Δtl 0.12 in 0.27 in L/632 L/462 Διι 0.10 in 0.23 in L/742 L/542 Pass Pass

			-	
Ream	Cal	CII	lations	
Deann	Cu			

	Additional Drift	Roof	Floor	Deck	Wall	Total Load	Total	Load
Trib	0.0	3.5	1	0	13.33			
		50.5	12.0		100.0	224.5.16	691.	5 plf
Live / Spow Load	- 0	59.5	12.0	0.0	- 160.0	231.5 plf 460.0 plf		
Live / Show Loud		420.0	40.0	0.0		400.0 plj		
		1		1	1		1	
Description:	3.0 ft Opening	3.5 ft Opening	4.0 ft Opening	5.0 ft Opening				
I								
Llander Colleut	(2)2x6	(2)2x6	(2)2x6	(2)2x8				
Header Callout	DF-L No. 2	DF-L No. 2	DF-L No. 2	DF-L No. 2				
Trimmore	(1) 2x6	(1) 2x6	(1) 2x6	(1) 2x6				
miniers	DF-L No. 2	DF-L No. 2	DF-L No. 2	DF-L No. 2				
King Studs	(3) 2x6	(4) 2x6	(4) 2x6	(4) 2x6				
0	DF-L No. 2	DF-L No. 2	DF-L No. 2	DF-L No. 2				
Wood Design								
Species	DF-L	DF-L	DF-L	DF-L				
Grade	No. 2	No. 2	No. 2	No. 2				
Width	3.00 in	3.00 in	3.00 in	3.00 in				
Depth	5.50 in	5.50 in	5.50 in	7.25 in				
Reaction								
Dead Load	347 lbs	405 lbs	463 lbs	579 lbs				
Live Load	690 lbs	805 lbs	920 lbs	1,150 lbs			<u> </u>	
							· · · · · · · · · · · · · · · · · · ·	
Load								
lu	3.0 ft	3.5 ft	4.0 ft	5.0 ft				
le	6.2 ft	7.1 ft	7.9 ft	10.0 ft				
Adjustment Factors							1	
Cd	1.15	1.15	1.15	1.15				
CF	1.3	1.3	1.3	1.2				
Material Properties								
Fb	900 psi	900 psi	900 psi	900 psi				
Fv	180 psi	180 psi	180 psi	180 psi				
E	1,600,000 psi	1,600,000 psi	1,600,000 psi	1,600,000 psi				
Emin	580,000 psi	580,000 psi	580,000 psi	580,000 psi				
Calculated Prop.					-		-	
А	16.50 in^2	16.50 in^2	16.50 in^2	21.75 in^2				
I	41.59 in^4	41.59 in^4	41.59 in^4	95.27 in^4				
S	15.13 in^3	15.13 in^3	15.13 in^3	26.28 in^3				
RB Emin'	6./3	7.21	7.61	9.81				
FhF	15.357 nsi	13,405 nsi	12.021 nsi	7,227 nsi				
Fb*	1.346 nsi	1.346 psi	1.346 psi	1.242 psi				
CL	1	1	1	1				
		·		·	·		·	
Shear and Moment								
M	9,335 lb-in	12,706 lb-in	16,595 lb-in	25,930 lb-in				
v	1,037 lbs	1,210 lbs	1,383 lbs	1,729 lbs				
Stress								
fb	617 psi	840 psi	1,097 psi	987 psi				
Fb'	1,339 psi	1,338 psi	1,337 psi	1,229 psi				
fb/Fb'	0.46	0.63	0.82	0.80				
_fv	94 psi	110 psi	126 psi	119 psi				
FV'	207 psi	207 psi	207 psi	207 psi				
TV/FV	0.46	0.53	0.61	0.58				
IVIAX NALIO	Pass	Pass	Pass	Pass				
		. 355	. 455	. 355				
Deflection								
Δτι	0.02 in	0.04 in	0.06 in	0.06 in				
٨	L/1,901	L/1,19/	L/802	L/941				
Διι	1/2 858	1/1 200	1/1 206	0.04 III 1 /1 414				
	Pass	Pass	Pass	Pass				
		1 000		1 000				

WOOD HEADER ALLOWABLE LOADS (kips/ft)

Load Duration Factor: 1.15 LVL Grade: 2.0E Top Chord Bracing: 2'-0" O.C. Max TL Deflection: L/240, 0.75in Repetitive Stress Increase: No

					H	eader S	pan				
Header Type	2'	3'	4'	5'	6'	8'	10'	12'	14'	16'	18'
(2) 2x4 DF Stud	1.15	0.69	0.29	0.22	0.12	NA	NA	NA	NA	NA	NA
(3) 2x4 DF Stud	1.84	1.04	0.46	0.35	0.18	NA	NA	NA	NA	NA	NA
(2) 2x6 DF #2	3.34	1.44	0.83	0.48	0.36	0.20	0.12	NA	NA	NA	NA
(3) 2x6 DF #2	5.06	2.19	1.27	0.72	0.55	0.30	0.18	0.13	NA	NA	NA
(2) 2x8 DF #2	5.41	2.30	1.27	0.80	0.59	0.32	0.20	0.14	0.09	NA	NA
(3) 2x8 DF #2	8.74	3.39	2.19	1.18	0.97	0.53	0.33	0.23	0.16	0.12	NA
(2) 2x10 DF #2	8.05	3.39	1.96	1.18	0.89	0.48	0.31	0.21	0.15	0.10	NA
(3) 2x10 DF #2	13.23	5.18	3.22	1.80	1.38	0.82	0.52	0.36	0.25	0.20	0.15
(2) 2x12 DF #2	10.81	4.83	2.65	1.60	1.15	0.67	0.41	0.29	0.21	0.15	0.12
(3) 2x12 DF #2	17.94	7.02	4.49	2.40	1.96	1.10	0.70	0.48	0.35	0.26	0.21
(2) 1-3/4x7-1/4 LVL	13.80	6.79	3.80	2.40	1.61	0.94	0.52	0.30	0.18	0.12	NA
(3) 1-3/4x7-1/4 LVL	20.70	10.47	5.64	3.50	2.53	1.38	0.79	0.45	0.28	0.17	NA
(2) 1-3/4x9-1/2 LVL	24.73	10.47	5.64	3.75	2.65	1.50	0.92	0.63	0.39	0.24	0.15
(3) 1-3/4x9-1/2 LVL	37.15	17.25	8.51	6.00	4.03	2.30	1.38	0.95	0.60	0.37	0.22
(2) 1-3/4x11-7/8 LVL	40.71	17.25	8.86	6.00	4.49	2.53	1.61	1.12	0.82	0.53	0.32
(3) 1-3/4x11-7/8 LVL	61.30	24.15	13.23	8.75	6.67	3.80	2.42	1.61	1.15	0.79	0.48
(2) 1-3/4x14 LVL	56.47	24.15	12.54	8.00	5.75	3.45	2.19	1.50	1.13	0.86	0.54
(3) 1-3/4x14 LVL	85.10	28.75	18.86	12.00	8.63	5.29	3.34	2.30	1.61	1.27	0.81

	12' Tall Wall	King Stud	King Stud	9' Tall Wall	
ription:		(6.25 Max Opening)	(10.5 Max Opening)		
Type:	2x Lumber (2"-4")	2x Lumber (2"-4")	2x Lumber (2"-4")	2x Lumber (2"-4")	
Species:	DF-L	DF-L	DF-L	DF-L	
Grade:	No. 2	No. 2	No. 2	No. 2	
Nominal width, t =	(1) 2	(1) 2	(2) 2	(1) 2	
Actual width =	1.50 in	1.50 in	3.00 in	1.50 in	
Actual depth =	5 50 in	5 50 in	5 50 in	5 50 in	
Span, L =	12.000 ft	12.000 ft	12.000 ft	9.000 ft	
w/o Plates	11.750 ft	11.750 ft	11.750 ft	8.750 ft	
Stud spacing, s =	16 in	48 in	73 in	16 in	
Lat. Pressure, w _{wind} =	13.78 psf	13.78 psf	13.78 psf	13.78 psf	
Axial load, P =	3128 lbs	50 lbs	50 lbs	3653 lbs	
Eccentricity, e =	U IN	Uin	U IN	U In	<u> </u>
K _{cE} =	0.3	0.3	0.3	0.3	<u> </u>
C =	0.8 18.4 nlf	54.8 nlf	0.8 84.1 nlf	0.8 18.4 nlf	<u> </u>
w -	10.4 pii	54.0 pi	04.1 pii	10.4 pii	II
Fb	900 psi	900 psi	900 psi	900 psi	
Fv	180 psi	180 psi	180 psi	180 psi	
Fc-prll	1,350 psi	1,350 psi	1,350 psi	1,350 psi	
Fc-perp	625 psi	625 psi	625 psi	625 psi	
C _d	1.60	1.60	1.60	1.60	
C _{F,Fb}	1.30	1.30	1.30	1.30	
C _{F,FcprII}	1.10	1.10	1.10	1.10	
С,	1.15	1.00	1.00	1.15	
С,	0.28	0.28	0.28	0.47	
C _H	1.00	1.00	1.00	1.00	
С,	1.07	1.07	1.07	1.07	
E	1,600,000 psi	1,600,000 psi	1,600,000 psi	1,600,000 psi	
Emin	580,000 psi	580,000 psi	580,000 psi	580,000 psi	
Allowable Stress:		1	1		Г Г
$F'_b = F_b C_d C_F C_r =$	2153 psi	1872 psi	1872 psi	2153 psi	
$F'_v = F'_v C_d C_H =$	288 psi	288 psi	288 psi	288 psi	
$F_c^* = F_c C_d C_F =$	2376 psi	2376 psi	2376 psi	2376 psi	
$F_{cE} = (K_{cE} E')/(I_e/d)2 =$	730 psi	730 psi	730 psi	1317 psi	
$F'_c = F_c C_d C_F C_p =$	676 psi	676 psi	676 psi	1118 psi	
F' _{c perp} = F _{c perp} Cb =	668 psi	668 psi	668 psi	668 psi	
E' = E =	1600000 psi	1600000 psi	1600000 psi	1600000 psi	
F _{bE} =	2019 psi	2019 psi	8077 psi	2712 psi	
Slenderness Ratio:	<u>< 50 OK</u>	<u>< 50 OK</u>	<u>< 50 OK</u>	<u>< 50 OK</u>	
R _B =	19	19	9	16	
Bending:	<u>< F'b OK</u>	<u>< F'b OK</u>	<u>< F'b OK</u>	<u>< F'b OK</u>	
M = w L ² /8 + P e/12 =	317 ft-lbs	946 ft-lbs	1452 ft-lbs	176 ft-lbs	
$T_b = MI/S =$	503 psi	1502 psi	1152 psi	2/9 psi	
5 = Chaora	6 III		15 11	o III	
Snear:	<u>< FV UK</u>	222 lbs	<u>< FV UK</u> 404 lbs		
v – w L/2 = f = 15 V/A –	20 nci	522 IDS 59 nci	454 IDS 45 nci	00 IDS	<u> </u>
ν	8 in ²	8 in ²	17 in ²	8 in ²	
Compression	< F'c OK	< F'c OK	< F'C OK	< F'r OK	<u> </u>
f. = P/Δ =	379 nsi	<u>6 nsi</u>	3 psi	443 nsi	
Compression (perp.):	< F ¹ c OK	< F'c OK	< F'c OK	< F'c OK	
f _{cnern} = P/A =	379 psi	6 psi	3 psi	443 psi	
- Perp	< 1.0 OK			< 1.0 OK	
Combined:					
Combined: (fc/Fc)2 + {fb/[Fb(1-(fc/FcE)]} =	0.80			0.35	
Combined: (fc/Fc)2 + {fb/[Fb(1-(fc/FcE)]} = Deflection:	0.80 > 180 OK	> 180 OK	> 180 OK	0.35 > 180 OK	
Combined: (fc/Fc)2 + {fb/[Fb(1-(fc/FcE)]} = Deflection: D = 22.5 w ⁴ /F' =	0.80 180 OK 0.24 in	<u>> 180 OK</u> 0.71 in	<u>> 180 OK</u>	0.35 <u>> 180 OK</u> 0.07 in	
Combined: (fc/Fc)2 + {fb/[Fb(1-(fc/FcE)]} = Deflection: D = 22.5 w L ⁴ /E ⁺ I =	0.80 > 180 OK 0.24 in 21 in^4	> <u>180 OK</u> 0.71 in 21 in^4	> <u>180 OK</u> 0.54 in 42 in^4	0.35 > 180 OK 0.07 in 21 in^4	

	King Stud	King Stud	King Stud	13.25' Tall Wall	
ription:	(10.5' Max Opening)	(5' Max Opening)	(3.5' Max Opening)		
Tupo	2x Lumber (2"-4")	2x Lumber (2"-4")	2x Lumber (2"-4")	2x Lumber (2"-4")	
Species:	DF-L	DF-L	DF-L	DF-L	
Grade:	No. 2	No. 2	No. 2	No. 2	
Nominal width, t =	(3) 2	(1) 2	(1) 2	(1) 2	
= Actual width = Nominal depth	4.50 in	1.50 in	1.50 in	1.50 in	
Actual depth =	7.25 in	7.25 in	7.25 in	7.25 in	
Span, L =	19.830 ft	16.000 ft	16.000 ft	13.250 ft	
w/o Plates	19.580 ft	15.750 ft	15.750 ft	13.000 ft	
Stud spacing, s =	73 in	40 in	31 in	16 in	
Lat. Pressure, w _{wind} =	13.78 psf	13.78 psf	13.78 psf	13.78 psf	
Axiai ioad, P = Eccentricity_e =	50 lbs	0 in	50 lbs	731 IDS 0 in	
K =	0.3	0.3	0.3	0.3	
C =	0.8	0.8	0.8	0.8	
w =	84.1 plf	46.2 plf	35.9 plf	18.4 plf	
	000	000 :	000 :	000	1
Fb	900 psi	900 psi	900 psi 180 psi	900 psi 180 psi	<u> </u>
FC-prll	1.350 psi	1.350 psi	1.350 psi	1.350 psi	
Fc-perp	625 psi	625 psi	625 psi	625 psi	
C _d	1.60	1.60	1.60	1.60	
C _{F,Fb}	1.20	1.20	1.20	1.20	
C _{F.Fcprll}	1.05	1.05	1.05	1.05	
C,	1.00	1.00	1.00	1.15	
C "	0.19	0.29	0.29	0.40	
C _H	1.00	1.00	1.00	1.00	
C _b	1.00	1.00	1.00	1.00	
E	1,600,000 psi	1,600,000 psi	1,600,000 psi	1,600,000 psi	
Emin	580,000 psi	580,000 psi	580,000 psi	580,000 psi	
Allowable Stress:			1		
$F'_b = F_b C_d C_F C_r =$	1728 psi	1728 psi	1728 psi	1987 psi	
$F'_v = F'_v C_d C_H =$	288 psi	288 psi	288 psi	288 psi	
$F_c^* = F_c C_d C_F =$	2268 psi	2268 psi	2268 psi	2268 psi	
$F_{cE} = (K_{cE} E')/(l_e/d)2 =$	457 psi	706 psi	706 psi	1037 psi	
$F'_c = F_c C_d C_F C_p =$	436 psi	653 psi	653 psi	914 psi	
F' _{c perp} = F _{c perp} Cb =	625 psi	625 psi	625 psi	625 psi	
E'= E=	1600000 psi	1600000 psi	1600000 psi	1600000 psi	
	8274 psi	1143 psi	1143 psi	1385 psi	
Sienderness Ratio:	<u>< 50 OK</u>	<u>< 50 OK</u> 25	<u>< 50 OK</u> 25	<u>< 50 OK</u> 22	
Bending:	< F'h OK	< F'b OK	< F'h OK	< F'h OK	
$M = w I^2/8 + P e/12 =$	4032 ft-lbs	1433 ft-lbs	1113 ft-lbs	388 ft-lbs	
f _b = M/S =	1227 psi	1309 psi	1016 psi	354 psi	
S =	39 in ³	13 in ³	13 in ³	13 in ³	
Shear:	<u>< F'v OK</u>	<u>< F'v OK</u>	<u>< F'v OK</u>	<u>< F'v OK</u>	
V = w L/2 =	824 lbs	364 lbs	283 lbs	119 lbs	
f _v = 1.5 V/A =	38 psi	50 psi	39 psi	16 psi	ļ
A =	33 in ²	11 in ²	11 in ²	11 in ²	
Compression:	<u>< F'c OK</u>	<u>< F'c OK</u>	<u>< F'c OK</u>	<u>< F'c OK</u>	
f _c = P/A =	2 psi	5 psi	5 psi	67 psi	<u> </u>
compression (perp.):	2 nsi	5 nci	5 nsi	67 nci	
f = P/A -	- p3i	5 μ31	5 h ai	< 1 0 OV	ł – – – – – – – – – – – – – – – – – – –
f _{c perp} = P/A =					
$f_{c perp} = P/A =$ Combined: $(f_c/E_c)_2 + {f_b}/[E_b(1-(f_c/E_cE))] =$				0.20	
f _{c perp} = P/A = Combined: (fc/Fc)2 + {fb/[Fb(1-(fc/FcE)]} = Deflection:	> 180 0K	> 180 OK	> 180 OK	0.20	
$f_{c,perp} = P/A =$ Combined: $(fc/Fc)2 + {fb/[Fb(1-{fc/FcE}]]} =$ Deflection: $D = 22.5 \text{ sm}^{1/4}/c^{1/4} \text{ cm}^{-1}$	> <u>180 OK</u>	> <u>180 OK</u>	<u>>180 OK</u>	0.20 0.20 > 180 OK	
$\begin{array}{ll} f_{cperp} = & P/A = \\ & \mbox{Combined:} \\ (fc/Fc)2 + \{fb/[Fb(1-\{fc/FcE)]\} = \\ & \mbox{Deflection:} \\ D = 22.5 \ w \ L^4/E^1 \ I = \\ & \ I = 1 \ I = $	≥ <u>180 OK</u> 1.22 in 143 in^4	<u>> 180 OK</u> 0.84 in 48 in^4	≥ <u>180 OK</u> 0.65 in 48 in^4	0.20 ≥ 180 OK 0.15 in 48 in^4	

WOOD TALL WALL & KING STUD ALLOWABLE LOADS (plf):

Load Duration Factor: 1.6 Max Vert. Load: 50 lbs Max Deflection: L/180

				Height			
King Stud	12'	14'	16'	18'	20'	22'	24'
(1) 2x4 Stud	12.8	NA	NA	NA	NA	NA	NA
(2) 2x4 Stud	25.6	NA	NA	NA	NA	NA	NA
(3) 2x4 Stud	38.4	NA	NA	NA	NA	NA	NA
(1) 2x6 DF #2	57.0	35.8	24.1	16.9	NA	NA	NA
(2) 2x6 DF #2	114.0	71.6	48.2	33.8	NA	NA	NA
(3) 2x6 DF #2	171.0	107.4	72.3	50.7	NA	NA	NA
(1) 2x8 DF #2	130.0	81.7	55.0	38.7	28.2	21.2	16.3
(2) 2x8 DF #2	260.0	163.4	110.0	77.4	56.4	42.4	32.6
(3) 2x8 DF #2	390.0	245.1	165.0	116.1	84.6	63.6	48.9
(1) 2x6 LSL	67.8	42.7	28.5	20.0	14.7	NA	NA
(2) 2x6 LSL	135.6	85.4	57.0	40.0	29.4	NA	NA
(3) 2x6 LSL	203.4	128.1	85.5	60.0	44.1	NA	NA
(1) 2x8 LSL	155.0	98.3	65.5	46.0	33.5	25.2	19.5
(2) 2x8 LSL	310.0	196.6	131.0	92.0	67.0	50.4	39.0
(3) 2x8 LSL	465.0	294.9	196.5	138.0	100.5	75.6	58.5

*NOTE 1: this table combined with trimmer table to determine combined stress on each common wall stud. *NOTE 2: allowable loads are interpolated at heights not in 2' increments.

WOOD TRIMMER ALLOWABLE LOADS (kips):

Load Duration Factor: 1.0 Eccentricity: 0" Weak Axis Braced: Y

	Height									
Trimmer Type	8'	10'	12'	14'	16'	18'	20'			
(1) 2x4 Stud	2.4	1.7	1.2	NA	NA	NA	NA			
(2) 2x4 Stud	4.9	3.4	2.4	NA	NA	NA	NA			
(3) 2x4 Stud	7.1	5.0	3.6	NA	NA	NA	NA			
(1) 2x6 DF #2	5.1	5.1	5.0	3.8	3.0	NA	NA			
(2) 2x6 DF #2	10.3	10.3	10.1	7.7	6.0	NA	NA			
(3) 2x6 DF #2	15.4	15.4	15.1	11.6	9.1	NA	NA			
(1) 2x8 DF #2	6.7	6.7	6.7	6.7	6.4	5.3	4.4			
(2) 2x8 DF #2	13.5	13.5	13.5	13.5	12.9	10.6	8.8			
(3) 2x8 DF #2	20.3	20.3	20.3	20.3	19.4	15.9	13.2			

*NOTE 1: this table combined with king stud table to determine combined stress on each common wall stud. *NOTE 2: allowable loads are interpolated at heights not in 2' increments.

UNBRACED WOOD COLUMN ALLOWABLE LOADS (kips)

								Compression
			Un	braced Heig	ıht			Perp. To
Column Type	8'	10'	12'	14'	16'	18'	20'	Grain
(2) 2x4 DF #2	4.50	3.00	2.10	SR	SR	SR	SR	6.50
(3) 2x4 DF #2	8.80	5.90	4.20	3.20	SR	SR	SR	9.80
4x4 DF #2	7.00	4.60	3.30	2.40	SR	SR	SR	7.60
(2) 2x6 DF #2	7.20	4.70	3.30	SR	SR	SR	SR	10.30
(3) 2x6 DF #2	20.40	14.70	10.70	8.00	6.20	4.90	SR	15.40
6x6 DF #2	18.00	15.70	13.00	10.50	8.50	6.90	5.70	18.90
6x8 DF #2	24.50	21.40	17.80	14.30	11.60	9.40	7.80	25.70
6x10 DF #2	31.40	27.10	22.50	18.20	14.70	12.00	9.90	32.60
8x8 DF #2	36.60	34.60	31.90	28.50	24.90	21.30	18.20	35.20
8x10 DF #2	46.30	43.90	40.40	36.20	31.50	27.00	23.10	44.50
8x12 DF #2	56.20	53.10	49.00	43.80	38.10	32.70	28.00	53.40
10x10 DF #2	60.50	58.80	56.50	53.40	49.60	45.20	40.50	56.40

Individual Footing Design

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof				
Roof Dead	(17psf)	(15.1ft)	=	257plf
Snow Live	(120psf)	(15.1ft)	=	1815plf
Upper Floor				
Floor Dead	(12psf)	(14.0ft)	=	168plf
Floor Live	(40psf)	(14.0ft)	=	560plf
Main Floor				
Floor Dead	(12psf)	(7.5ft)	=	90plf
Floor Live	(40psf)	(7.5ft)	=	300plf
Deck Cover				
Roof Dead	(17psf)	(.Oft)	=	plf
Snow Live	(120psf)	(.Oft)	=	plf
Deck Floor				
Floor Dead	(12psf)	(.Oft)	=	plf
Snow Live	(120psf)	(.0ft)	=	plf
Misc				
Wall Load:	(12psf)	(12.0ft)	=	144plf
Conc Stem:	(145pcf)	(2 x .5ft)	=	145plf
Misc Load:	(.0ft)	(.0ft) (.0ft)	=	plf
				2810plf

Use Footing Width:	30	Х	10	in
w/		(3)	#4	Cont.

Individual Footing Design

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof					
Roof Dead	(17psf)	(4.(Oft)	=	68plf
Snow Live	(120psf)	(4.0	Oft)	=	480plf
		· · ·			-
Upper Floor					
Floor Dead	(12psf)	(1.0	Oft)	=	12plf
Floor Live	(40psf)	(1.0)ft)	=	40plf
Main Floor					
Floor Dead	(12psf)	(1.0	Oft)	=	12plf
Floor Live	(40psf)	(1.0	Oft)	=	40plf
Deck Cover					
Roof Dead	(17psf)	(.0	ft)	=	plf
Snow Live	(120psf)	0.)	ft)	=	plf
Deck Floor					
Floor Dead	(12psf)	(2.5	5ft)	=	30plf
Snow Live	(120psf)	(2.5	5ft)	=	300plf
Misc					
Wall Load:	(12psf)	(20.	Oft)	=	240plf
Conc Stem:	(145pcf)	(2 x	.5ft)	=	145plf
Misc Load:	(.0ft)	(.0ft)	(.0ft)	=	plf
					1287plf
	ooting Width	12	v	8	in

Use Footing Width:	12	X	8	in
w/		(2)	#4	Cont.

Soil Bearing Pressure

Axial Load	
2132 pounds	
Design Soil Bearing Pressure	
1500 psf	ΔΔ.Δ.
	Δ.ΔΔ
Skin Friction (Soil to Concrete)	. Δ Δ Δ
250 psf	.Δ.Δ.Δ.
	Δ.Δ.Δ. Ο
Height of Pole Embedment	. Δ Δ Δ
0 inches	.Δ.ΔΔ
	Δ . Δ . Δ .
Diameter of Concrete Footing	Δ.Δ.Δ.
20 inches	Δ.ΔΔ
Allowable Axial Load	
3272 pounds	20
3272 > 2132	

> ОК

PAD FOOTING DESIGN CAPACITIES:

Soil Bearing (1500 psf)									
Dimensions (Inches) Capacity # of Bars Min. Col. Size									
72 x 72 x 12	47,500 lbs	10	3.5 sq.						
66 x 66 x 12	39,750 lbs	8	3.5 sq.						
60 x 60 x 10	33,450 lbs	6	3.5 sq.						
54 x 54 x 10	27,000 lbs	5	3.5 sq.						
48 x 48 x 8	21,500 lbs	4	3.5 sq.						
42 x 42 x 8	16,500 lbs	4	3.5 sq.						
36 x 36 x 8	12,000 lbs	4	3.5 sq.						
30 x 30 x 8	8,350 lbs	3	3.5 sq.						
24 x 24 x 8	5,300 lbs	2	3.5 sq.						
18 x 18 x 8	2,900 lbs	2	3.5 sq.						

Bars to be 3 1/2" from bottom of pad. Evenly space in both directions.

CONT. FOOTING DESIGN CAPACITIES:

	Soil Bearing (1500 psf)								
	Dimen	sions	s (Inches)	Capacity	# of Bars				
	60	Х	10	6,850 plf	6				
	54	Х	10	6,200 plf	5				
	48	х	10	5,500 plf	4				
	42	х	10	4,750 plf	4				
	36	х	10	4,000 plf	3				
	30	х	10	3,400 plf	3				
	24	х	8	2,800 plf	2				
	18	х	8	2,100 plf	2				
	16	х	8	1,850 plf	2				
	12	х	8	1,350 plf	2				
E	Bars to I	be 3	1/2" from	bottom of fo	ooting.				

$\frac{POST FOUNDATION DETAIL}{3/4 IN = 1 FT}$

SNAKE RIVER
ENGINEERING

OSB SHEAR WALL SCHEDULE:

MARK	SHEATHING	SIDES OF WALL	SHEET NAILING PERIMETER / FIELD	SHEET STAPL PERIMETER / F	LING BLKG	NAILING (UNO) BOTTOM PLATE INTO RIM
SW1	7/16" APA RATED	1	8d @ 6 / 12	OR 16ga x 1-1/2 3 / 12	"@YES	(2) 16d NAILS PER 16" BAY
SW4	7/16" APA RATED	1	8d @ 2 / 12	(4x STUDS @ SHEATHIN PERIMETER)	NG YES	(4) SDS SCREWS PER 16" BAY

TYP. NOTES:

1 ALL SHEATHING PANEL EDGES SHALL BE BLOCKED UNO

2 PROVIDE SAME NAILING PATTERN ABOVE AND BELOW OPENINGS AS ADJACENT SHEAR PANEL.

3 ALL EXTERIOR WALLS SHALL BE SHEARWALL "SW1" WITHOUT BLKG UNO

4 FASTEN GABLE/RIM TO SHEAR WALLS BELOW W/ 10d TOENAILS @ 12" O.C. UNO

5 FASTEN TRUSS HEELS TO SHEAR WALLS W/ H2.5A AND (2) 10d TOENAILS @ EACH

6 GYP BOARD SHEAR WALLS MAY BE SUBSTITUTED WITH AN SW1 SHEAR WALL @ CONTRACTOR'S OPTION

7 WALL SHEATHING CAN BE APPLIED TO EITHER SIDE OF THE WALL. (UNLESS NOTED OTHERWISE)

HOLDOWN SCHEDULE:

		STRAP	# OF		# OF	
MARK	STRAP TYPE	FASTENERS	STUDS	ANCHOR BOLT	STUDS	FASTENERS
				HDU8-SDS2.5		(20) 1/4"x2 1/2"
HD4	-			W/ SB7/8x24 OR PAB7	3	(20) 1/4 X2-1/2
				@ INT. PONY WALLS		202
	G	ABIE / DR	AG TRU	SS OR RIM KEY NOTES:		

'N NIIVI NE I

ATTACH GABLE / DRAG TRUSS OR RIM TO TOP PLATE Τ1 W/ 10d TOENAILS @ 6" O.C., EDGE NAIL SHEATHING ABOVE TO TRUSS OR RIM

CALLOUT	PAD FOOTING SC FOOTING SIZE	CHEDULE REINFORCEMENT	QTY
(P20"RND 30 2	20" DIA X 30"	(2) #4 REBAR E.W.	2
P2.5 10 3	30" X 30" X 10"	(3) #4 REBAR E.W.	4
P2.0 10 3	24" X 24" X IO"	(3) #4 REBAR E.W.	5
	(2)) OKAY	

HANGER SCHEDULE							
CALLOUT	CALLOUT MODEL TOP NAILS SEAT MEMBER NAILS FACE NAILS						
501	IUS1.81/14	N/A	2.00"	2-STRONG-GRIP	12-10DX1.5		
502	IUS1.81/9.5	N/A	2.00"	2-STRONG-GRIP	(8) 0.148 × 3		
506	LUS28	N/A	1.75"	3-10D	6-10DX1.5		

	HEADER SCHEDULE
NO.	TYPE
H01	(1) 4×8 D.F.
H02	(2) 1 3/4 X 9 1/4 LVL
H03	(2) 2X12 D.F.
H04	(2) 4×12 D.F.
H05	(3) 1 3/4 X 9 1/4 LVL
H06	(3) 1 3/4 X 14 LVL

POST SCHEDULE				
NO.	QTY	FLR.	NOTES	
P01	9	0	6×6 D.F. #2	
P02	1	1	6×6 D.F. #2	

	BEAM SCHEDULE									
NO.	FLR.	PLY(S)	NOTES	CTR. LG +/-	MIN BRG	T.O. BEAM	B.O. BEAM	CALC #		
B01	0	1	(B-01) 6×10 D.F. #2	28'		-0'-8 3/8"	-1'-5 7/8"	1		
B02	0	1	(B-02) 6×10 D.F. #2	28'		-0'-8 3/8"	-1'-5 7/8"	2		
B03	1	1	(B-03) 6×12 D.F. #2	8'-2 3/4"		9'-5 3/8"	8'-5 7/8"	3		
B04	0	4	(B-04CS) 4X10 D.F. #2 (CRAWL SPACE HDRS)	3'-6"		-0'-0 3/4"	-0'-10"	465		

BEARING SCHEDULE			
NO.	BEARING AREA (X)	COMMENTS	
X01	5 1/2" × 5 1/2"	(4) STUDS MIN.	

CONTINUOL	NTINUOUS FOOTING SCHEDULE (ALL FOOTINGS "F I .3" UNO)			
CALLOUT	FOOTING SIZE	REINFORCEMENT		
F1.3 10 2	16" X 10"	(2) #4 CONT. REBAR		
F2.5 10 3	30" X I 0"	(3) #4 CONT. REBAR		

POST BASE SCHEDULE			
NUMBER	LABEL	QTY	
PB01	ABU66Z	11	