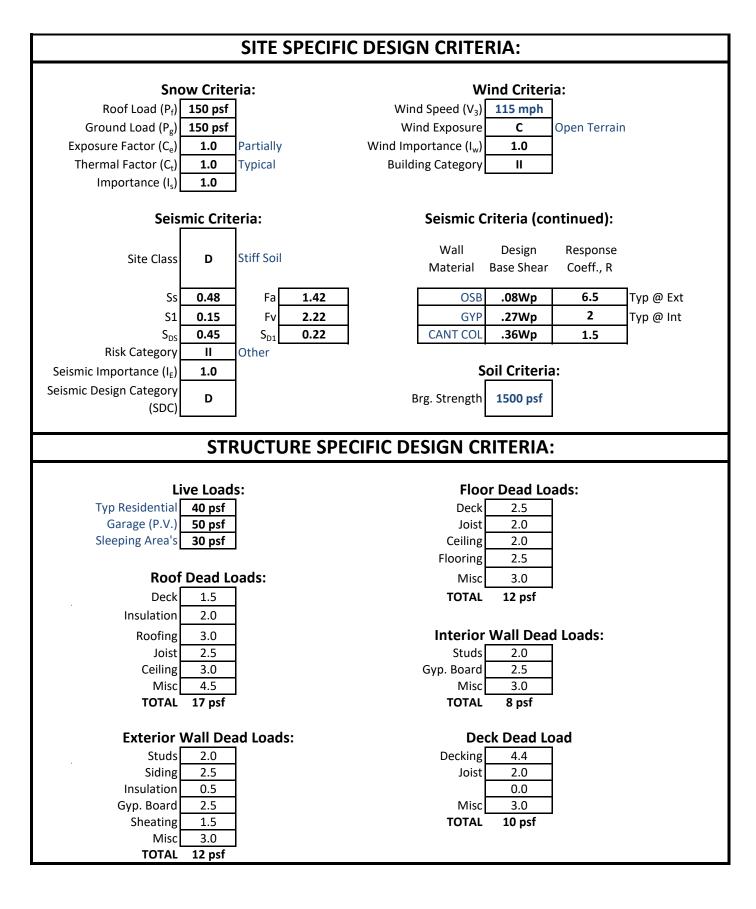
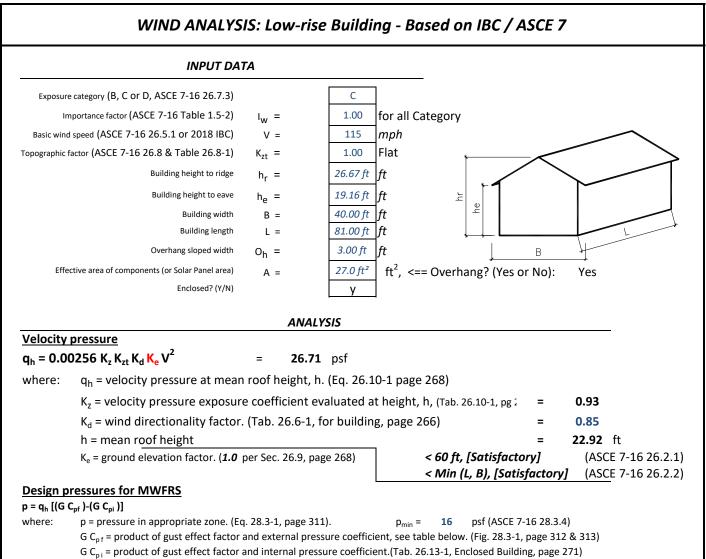
Structural Calculations


Project Title: Kozitza Residence Address: 09/01 Royal Scot Sub Location: Donnelly, Idaho


Job #: 2023-4982

Prepared in accordance with 2018 IBC. Calculations expire by: 07/05/2024

0.18 or

a = width of edge strips, Fig 28.3-1, page 312, MAX[MIN(0.1B, 0.1L, 0.4h), MIN(0.04B, 0.04L), 3] =

-0.18

4.00 ft

Net Pressu	ires (pst), B	asic Loac	l Cases				Net Pres
	Roof ang	leq=	18.43	Roof an	ngle q =	18.43	
Surface	6.6	Net Pre	ess. W/	6.6	Net Pre	ess. W/	Surface
	G C _{p f}	$(+GC_{pi})$	(-GC _{pi})	G C _{p f}	(+GC _{pi})	(-GC _{pi})	
1	0.52	8.99	18.60	-0.45	-16.83	-7.21	1T
2	-0.69	-23.24	-13.62	-0.69	-23.24	-13.62	2T
3	-0.47	-17.32	-7.71	-0.37	-14.69	-5.07	3T
4	-0.42	-15.90	-6.29	-0.45	-16.83	-7.21	4T
5				0.40	5.88	15.49	
6				-0.29	-12.55	-2.94	Surface
1E	0.78	16.03	25.64	-0.48	-17.63	-8.01	
2E	-1.07	-33.39	-23.77	-1.07	-33.39	-23.77	5T
3E	-0.67	-22.79	-13.18	-0.53	-18.96	-9.35	6T
4E	-0.62	-21.32	-11.70	-0.48	-17.63	-8.01	
5E				0.61	11.48	21.10	
6E				-0.43	-16.29	-6.68	

Net Pressures (psf), Basic Load Cases

Net Pressures (psf), Torsional Load Cases

Net Press. W/

Net Press. W/

(-GC_{ni})

4.65

-3.41

-1.93

-1.57

(-GC_{pi})

3.87

-0.73

64%

Roof angle q = 18.43

(+GC_{pi})

2.25

-5.81

-4.33

-3.98

 $(+GC_{p_i})$

1.47

-3.14

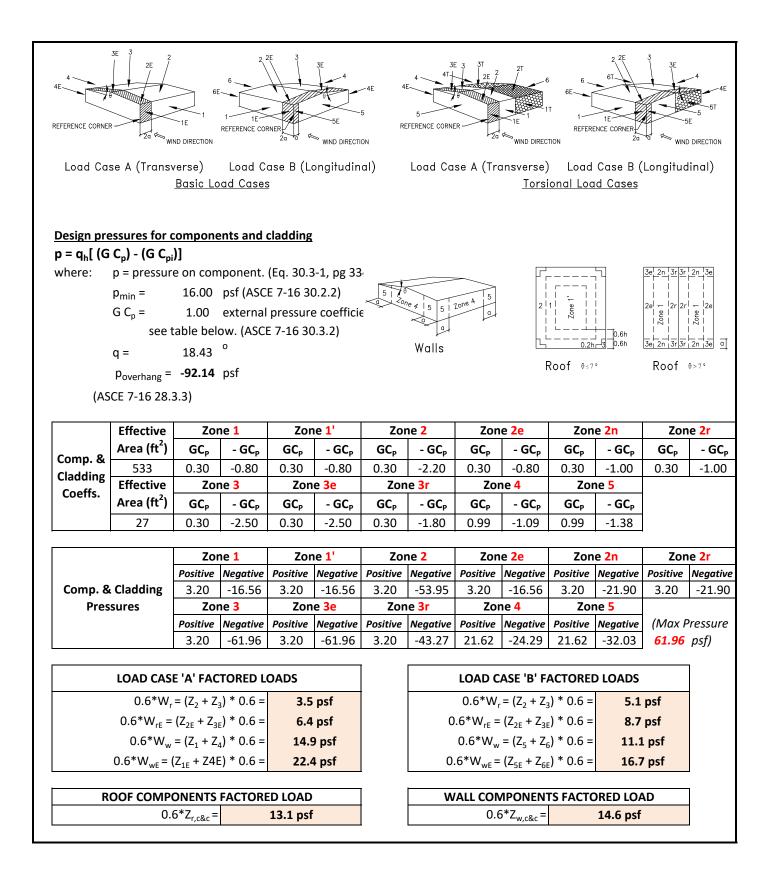
+ / - Wind Pressure

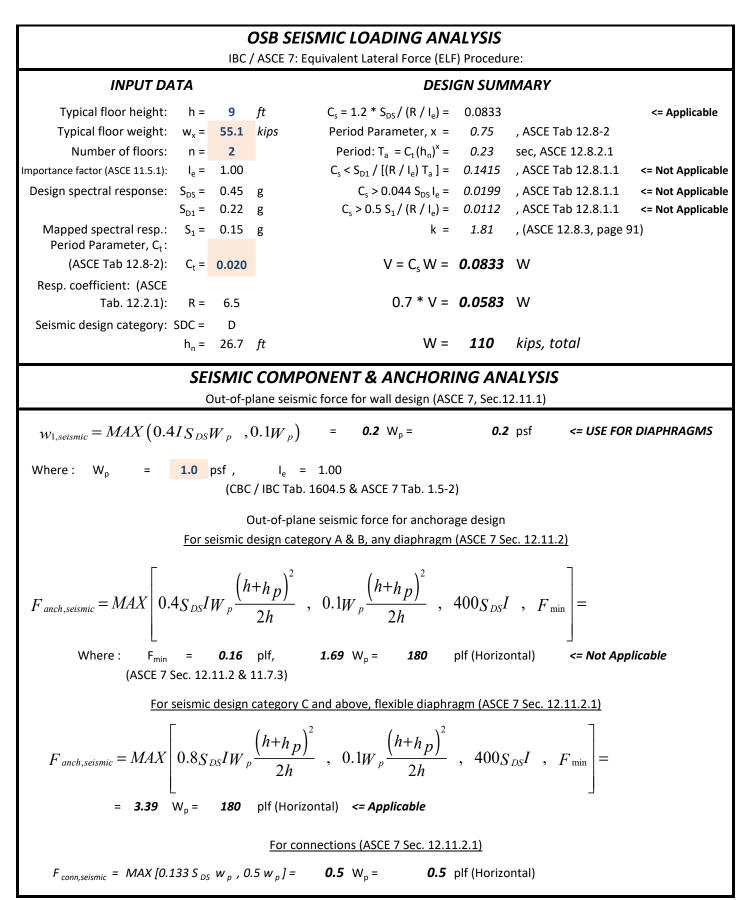
Roof angle q = 0.00

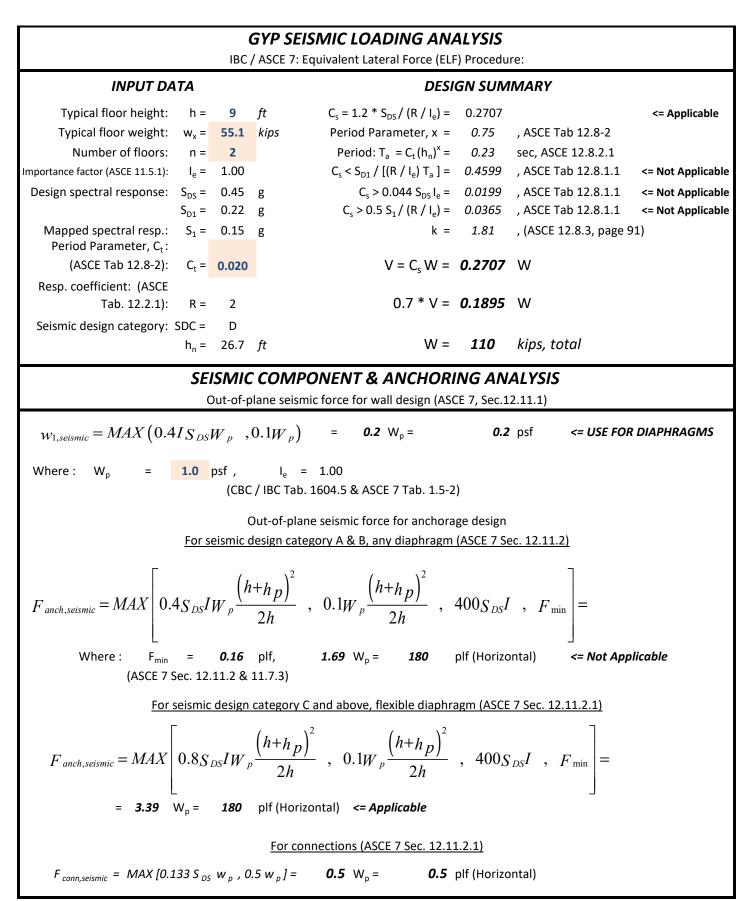
G C_{p f}

0.52

-0.69

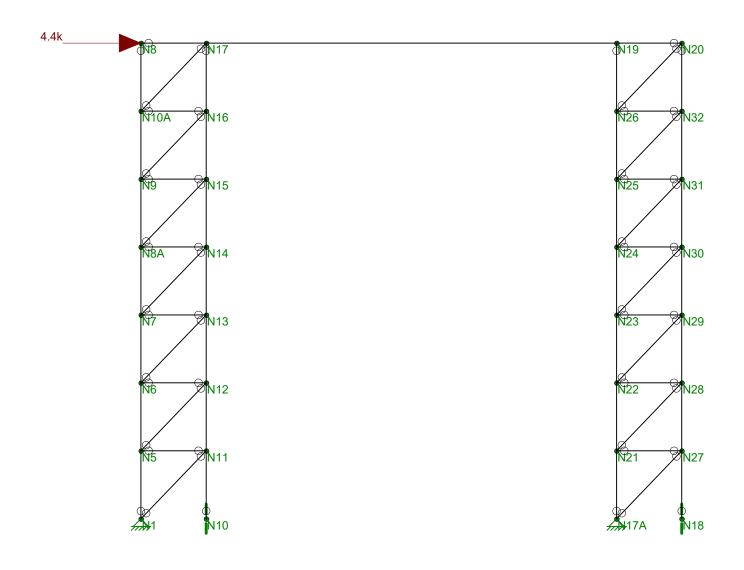

-0.47


0.00


G C_{p f}

0.40

-0.29



	WIND / SEISMIC SHEAR FORCE CALCULATIONS:																
<u> </u>	From ASCE 7-16 Wind & Seismic Loading Analysis																
	Roof / Floor					Wall			Load above					Loadin	g		
Wall Line	Wind Force (psf)	Diaph. Weight	Wr, We truss trib (ft)	Area W (ft)	Area L (ft)	Wind Force (psf)	Wall DL (psf)	Wall ht (ft)	wall line dist (ft)	Upr. Flr Wall ht (ft)	Wind (#)	Seismic (#)	*C _s (Wp)	=	Wind Force (kips)	Seismic Force (kips)	Lateral Control
X1-1	9.6	55	17.7	40.0	78.0	16.4	12.0	9.0	40.0				0.06	=	4.87	5.21	Seismic
X2-1	9.6	55	17.7	40.0	50.0	16.4	12.0	9.0	40.0				0.06	=	4.87	3.43	Wind
X3-1	9.6	55	9.0	26.0	29.5	17.2	12.0	10.5	26.0				0.06	=	1.47	0.90	Wind
Y1-1	9.6	55	17.7	51.5	40.0	16.1	12.0	9.0	51.5				0.06	=	6.23	3.60	Wind
Y2-1	9.6 9.6	55 55	17.7 9.0	51.5 29.5	40.0 40.0	16.1 17.0	12.0 12.0	9.0 10.5	51.5 29.5				0.06 0.06	= =	8.82	5.69	Wind
Y3-1	9.6	55	9.0	29.5	40.0	17.0	12.0	10.5	29.5				0.06	=	2.59	2.09	Wind

	<u>HEAR WAL</u>					
	X1-1	X1-1	X2-1	X3-1	Y1-1	Y2-2
	Shea	r Wall Forces				
Total length of wall	60.00 ft	18.00 ft	50.00 ft	29.50 ft	11.00 ft	35.50
	= 60.00 ft	18.00 ft	50.00 ft	29.50 ft	11.00 ft	28.00
Total length of full ht seg.		15.00 ft	24.58 ft	14.50 ft	3.50 ft	21.00
- 0	= 9.00 ft	10.50 ft	9.00 ft	10.50 ft	9.00 ft	9.00
Maximum opening height H		2.00 ft	8.00 ft	10.50 ft	8.00 ft	2.00
Total force at top of wall V ₁		1681 lbs	4871 lbs	1469 lbs	3116 lbs	8821
Self weight W _{DL self}		126 plf	108 plf	126 plf	108 plf	108 p
Applied dead load W _{DL above}		40 plf	40 plf	40 plf	40 plf	40 p
Prefered OSB thickness	in <u>7/16</u>	7/16	7/16	7/16	7/16	7/16
	in <u>1/2</u>	1/2	1/2	1/2	1/2	1/2
Wall Connected to Concrete y/n	= Y	Y	Y	Y	Y	Y
	Shear V	Wall Segment	ts			
	2.75	7.50	3.50	3.00	1.75	4.75
	2.75	7.50	7.00	3.00	1.75	4.75
	13.00		10.83	5.00		11.5
	4.00		3.25	3.50		
	4.00					
	5.00					
		nsfer to Conc		Not Doubl	2500 //-	24251
	= <u>Not Req'd</u>	102 lbs	Not Req'd	Not Req'd	3500 lbs	2125
1/2 Anchor Bolts (Provide:	Code Min.	72 " O.C. Code Min.	72 '' O.C. Code Min.	72 " O.C. Code Min.		48 '' O A4
Min # of 1/2 Anchor Bo		(2) Min	(5) Min	(2) Min		(9) M
Load From Abo		0.00	0.00	0.00	0.00	0.00
	0.00	Perp. Wall	0.00	0.00	HD3	HD1
	Shoar P	esisting Syste				
Force Calculated	218.48	112.04	366.09	204.37	890.41	420.0
	OSB	OSB	OSB	OSB	B.F.	OSB
Min Shear Wall Segme		3.00 ft	2.57 ft	3.00 ft	1.33 ft	2.57
_	a= SW1	SW1	SW2	SW1	4400	SW3
	5001	5001	5002	501	4400	5000
Min Shear Wall Segmer	it:					
_	a=					
	Deaking / Naili					
	москиру / мани	ng Framing A	rtachment			
Blocking Unit Shear	Blocking / Nailin 59 plf		-	50 plf	567 plf	248 p
	59 plf NONE	93 plf NONE	97 plf	50 plf NONE	567 plf B3	248 p B1
Blocking Unit Shear	59 plf	93 plf	97 plf			
Blocking Unit Shear Blocking	59 plf NONE See SCHED	93 plf NONE See SCHED	97 plf NONE	NONE	B3	B1
Blocking Unit Shear Blocking	59 plf NONE See SCHED Unit -= 0.525	93 plf NONE	97 plf NONE See SCHED 0.492	NONE See SCHED	B3 T3 0.318	B1 T1
Blocking Unit Shear Blocking Nailing % of full height segments %fh = L _w / % of maximum opening height %oh = H'/H	59 plf NONE See SCHED Unit -= 0.525 H= 1.000	93 plf NONE See SCHED Base Shear 0.833 0.190	97 plf NONE See SCHED 0.492 0.889	NONE See SCHED 0.492 1.000	B3 T3 0.318 0.889	B1 T1 0.75 0.22
Blocking Unit Shear Blocking Nailing % of full height segments %fh = L _w / % of maximum opening height %oh = H'/H Shear cap adj factor SCA	59 plf NONE See SCHED Unit = 0.525 = 1.000 = 0.51	93 plf NONE See SCHED Base Shear 0.833 0.190 1.00	97 plf NONE See SCHED 0.492 0.889 0.54	NONE See SCHED 0.492 1.000 0.50	B3 T3 0.318 0.889 0.47	B1 T1 0.75 0.22 1.00
Blocking Unit Shear Blocking Nailing % of full height segments %fh = L _w / % of maximum opening height %oh = H'/H Shear cap adj factor SCA Unit base shear vbase V ₁ /L,	59 plf NONE See SCHED Unit = 0.525 = 1.000 = 0.51 v = 112 plf	93 plf NONE See SCHED Base Shear 0.833 0.190 1.00 112 plf	97 plf NONE See SCHED 0.492 0.889 0.54 198 plf	NONE See SCHED 0.492 1.000 0.50 101 plf	B3 T3 0.318 0.889 0.47 890 plf	B1 T1 0.75 0.22 1.00 420 g
Blocking Unit Shear Blocking Nailing % of full height segments % of maximum opening height Shear cap adj factor Unit base shear vbase V ₁ /L, Effective unit base shear vreq=v _{base} /SCA	59 plf NONE See SCHED Unit = 0.525 = 1.000 = 0.51 = 112 plf F= 218 plf	93 plf NONE See SCHED Base Shear 0.833 0.190 1.00 112 plf 112 plf	97 plf NONE See SCHED 0.492 0.889 0.54 198 plf 366 plf	NONE See SCHED 0.492 1.000 0.50 101 plf 204 plf	B3 T3 0.318 0.889 0.47 890 plf 1902 plf	B1 T1 0.75 0.22 1.00 420 g 420 g
Blocking Unit Shear Blocking Nailing % of full height segments %fh = L _w / % of maximum opening height %oh = H'/H Shear cap adj factor SCA Unit base shear vbase V ₁ /L,	59 plf NONE See SCHED Unit = 0.525 = 1.000 = 0.51 = 112 plf F= 218 plf = 61.9 k-ft	93 plf NONE See SCHED Base Shear 0.833 0.190 1.00 112 plf 112 plf 112 plf 17.6 k-ft	97 plf NONE See SCHED 0.492 0.889 0.54 198 plf 366 plf 81.0 k-ft	NONE See SCHED 0.492 1.000 0.50 101 plf	B3 T3 0.318 0.889 0.47 890 plf	B1 T1 0.75 0.22 1.00 420 g 420 g
Blocking Unit Shear Blocking Nailing % of full height segments % of maximum opening height Shear cap adj factor Unit base shear Effective unit base shear Ovrtrn. mo. Ttl. length of wall	59 plf NONE See SCHED Unit = 0.525 = 1.000 = 0.51 = 112 plf F= 218 plf = 61.9 k-ft Shear wall	93 plf NONE See SCHED Base Shear 0.833 0.190 1.00 112 plf 112 plf 17.6 k-ft adjustment f	97 plf NONE See SCHED 0.492 0.889 0.54 198 plf 366 plf 81.0 k-ft actor	NONE See SCHED 1.000 0.50 101 plf 204 plf 31.1 k-ft	B3 T3 0.318 0.889 0.47 890 plf 1902 plf 14.0 k-ft	B1 T1 0.75 0.22 1.00 420 p 420 p 79.4 k
Blocking Unit Shear Blocking Nailing % of full height segments % of maximum opening height Shear cap adj factor Unit base shear vbase V ₁ /L, Effective unit base shear vreq=v _{base} /SCA	59 plf NONE See SCHED Unit = 0.525 = 1.000 = 0.51 = 112 plf F= 218 plf = 61.9 k-ft Shear wall	93 plf NONE See SCHED Base Shear 0.833 0.190 1.00 112 plf 112 plf 112 plf 17.6 k-ft	97 plf NONE See SCHED 0.492 0.889 0.54 198 plf 366 plf 81.0 k-ft	NONE See SCHED 0.492 1.000 0.50 101 plf 204 plf	B3 T3 0.318 0.889 0.47 890 plf 1902 plf	B1 T1 0.75 0.22

SH	EAR WAL	L CALCUL	ATIONS:		
	Y3-1				
	-	r Wall Forces			
Total length of wall	26.00 ft				
Total length of shear wall L =	26.00 ft				
Total length of full ht seg. $L_w =$	14.50 ft				
height of shear wall H =	10.50 ft				
Maximum opening height H' =	6.67 ft				
Total force at top of wall $V_1 =$	2588 lbs				
Self weight W _{DL self} =	126 plf				
Applied dead load W _{DL above} =	40 plf				
Prefered OSB thickness in	7/16				
Prefered Gyp thickness in	1/2				
Wall Connected to Concrete $y/n =$	Y				
	Shear \	Nall Segment	ts		
	6.50				
	4.00				
	4.00				
	Shear Tra	nsfer to Conc	rete		
Τ=	306 lbs				
1/2 Anchor Bolts @	72 " O.C.				
Provide:	Code Min.				
Min # of 1/2 Anchor Bolts	(3) Min				
Load From Above	0.00				
Holdown	Perp. Wall				
	Shear R	esisting Syste	em		
Force Calculated	249.96				
	OSB				
Min Shear Wall Segment:	3.00 ft				
Provide: Va=	SW1				
Min Shear Wall Segment:					
Provide: Va=					
Blo	cking / Naili	ng Framing At	ttachment		
Blocking Unit Shear	100 plf				
Blocking	NONE				
Nailing	See SCHED				
	Unit	Base Shear			
% of full height segments % fh = L_w/L =	0.558	Suse Sileai			
% of maximum opening height %oh = H'/H =	0.635				1
Shear cap adj factor SCAF =	0.71			 	
Unit base shear vbase $V_1/L_w =$	178 plf				
Effective unit base shear vreq=v _{base} /SCAF=	250 plf			ļ	
Ovrtrn. mo. Ttl. length of wall OTM =	38.1 k-ft				
	Shear wall	adjustment f	actor	 	
Resist moment total L. of wall RM =	56.0 k-ft				
r=	0.6650				
C _o =	0.7140			1	1

Loads: BLC 1, Wind Load Envelope Only Solution

KccX[·]GYWFjcb[·]GYhg

	Šæà^∣	Ù@a∯_^	V^]^	Ö^∙āt}ÁŠãarc	Tæe∿¦ãæ¢	Ö^• ã} ÁÜ≚ ^•	0EAÃ) Gá		ÌCÁQ€ÉÊÌ€DÁŽBÌÈÈ
F	Ô@¦å	IĚÝÍĔØÙ	Ô[゙{}	Ü^&œ)*` æ	ÖØEŠÁÁG	V^] 38æ	GËÍ	I FËÎÎ	ÎGÈHUF
G	Y ^à	GÝÎ	Ó^æ	Þ[}^	ÖØEŠÁÁG	V^] 38æ	ÌÈÍ	FĚIÏ	G€EËJÏ
Н	Ó^æ	I ÝFG	Ó^æ	Þ[}^	GI ØËFTÊ ÒÆÖØÆÓæ†æ‡}&^å	V^] 38aa	hjèï í	I€ÈJÍ	IFÍÈGÌH

>c]bh7ccfX]bUhYgʻUbX`HYa dYfUhi fYg

	Šæà^	ÝÆcá	ŸÆcá	V^{] <i>Ã</i> Z⁄á
F	ÞF	€	€	€
G	ÞÌ	€	FI	€
Н	ÞF€	FÈG	€	€
	ÞFÏ	FÈG	FI	€ €
Í	ÞÍ	€	G	€
Î	ÞÎ	€	I	€
Ï	ÞÏ	€	Î	€
Ì	ÞÌŒ	€	Ì	€
J	ÞJ	€	F€	€
F€	ÞF€Œ	€	FG	€
FF	ÞFF	FÈG	G	€
FG	ÞFG	FÈG	I	€
FH	ÞFH	FÈG	Î	€
FI	ÞA	FÈG	Ì	€
FÍ	ÞŔ	FÈG	F€	€
FÎ	ÞĤ	FÈG	FG	€
FΪ	ÞFÏŒ	FI	€	€
FÌ	ÞŔ	FÍÈG	€	€
FJ	ÞFJ	FI	FI	€
G€	ÞŒ	FÍÈG	FI	€
GF	Т	FI	G	€ €
GG	Ðd	FI	I	€
GH	ÞGH	FI	Î	€
G	ÞG	FI	Ì	€
GÍ	ÞĞ	FI	F€	€
Ö Ö Ö	Đ٩	FI	FG	€
GÏ	₽Ğ	FÍÈG	G	€
	ÞĜ	FÍ ÈG FÍ ÈG		€
GJ	ÞG	FÍÈG	Î	€
H€	ÞH€	FÍÈG	Ì	€
HF	ÞF	FÍ ÈG FÍ ÈG	F€	€
HG	ÞHG	FÍÈG	FG	€

>c]bh6cibXUfm7cbX]hjcbg

	R[ā, c/Šæà^	ÝÃŽEBjá	ΫÁΣtBajá	Ü[cæaāj}ŽČË⊶eDæåá
F	ÞF	Ü^æ\$æ į }	Ü^æ\$æį́}	
G	ÞŔ		Ü^æ\$æį{}	
Н	ÞF€		Ü^æ\$æį{}	
	ÞFÏ Œ	Ü^æ&cā[}	Ü^æ\$æį́}	

KccX'8 Yg][b`DUlfUa YhYfg

	Šææ̀^∣	Ù@a∳^	Š^}*coži Š^Ęčče	á Š^BajŽeá		È ^Ëa^} åÁà[⊞È:	SË[ĭc SË3)	ÔX	Ô¦	UčoÁ,	₩QÁ,æ
F	ΤF	Ô@¦å	FI G	G	Šà∕Į́` c						
G	ΤG	Ô@¦å	FI G	G							
Н	ΤI	Y ^à	GËÏG		ŠàĄ́Čč						
	ΤÍ	Y ^à	FÈG		Šà∕Įĭ c						
Í	ΤÎ	Y ^à	GËÏG		Šà∕Įĭ c						
Î	ΤÏ	Y ^à	FÈG		Šà∕Į́` c						
Ï	ΤÌ	Y ^à	GËÏG		ŠàĄ́čc						
Ì	ΤJ	Y ^à	FÈG		Šà∕Į́` c						
J	TF€	Y ^à	GËÏG		ŠàĄ́čc						
F€	T FF	Y ^à	FÈG		ŠàĄ́čc						
FF	T FG	Y ^à	GËÏG		Šà∕Į́` c						
FG	T FH	Y ^à	FÈG		Šà∕Įĭ c						
FH	T FI	Y ^à	GËÏG		ŠàĄ́čc						
FI	<u>T FÍ</u>	Y ^à	FÈG		Šà⁄Į č						
FÍ	T FÎ	Y ^à	GËÏG		Šà∕Į́` c						
FÎ	ΤFΪ	Ô@¦å	FI G	G							
FΪ	T FÌ	Ô@¦å	FI G	G							
FÌ	T FJ	Y ^à	GËÏG		ŠàĄ́čc						
FJ	TG€	Y ^à	FÈG		Šà∕Į́ č						
G€	TGF	Y ^à	GËÏG		Šà∕Į́ č						
GF	TGG	Y ^à	FÈG		ŠàĄ́čc						
GG	TGH	Y ^à	GËÏG		ŠàĄ́čc						
GH	TG	Y ^à	FÈG		ŠàĄ́čc						
G	ТĠ	Y ^à	GËÏG		ŠàĄ́čc						
GÍ GÎ	ТĜ	Y ^à	FÈG		ŠàĄ́ĭčc						
Ĝ	ТĠ	Y ^à	GËÏG		ŠàĄ́ĭčc						
Ğ	ΤĠ	Y ^à	FÈG		ŠàĄ́ĭčc						
Ġ	T GJ	Y ^à	GËÏG		ŠàĄ́ĭčc						
GJ	TH€	Y ^à	FÈG		ŠàĄ́ĭčc						
H€	THF	Y ^à	GËÏG		ŠàĄ́ĭčc						
HF	T HFCE	Ó^æ	FÍÈJG €	€	ŠàĄ́čc						

>c]bh@UXg'UbX'9 bZcf WYX'8]gd`UWYa Ybhg'f6 @' %. K]bX'@UXŁ

R[∄].c/Šæà^	ŠÊÖÊ	Öãi^&cãį}	Tæ*}ãčå^ŽQÊËdĐŽQãÊæåDŽQC⊡ âGĐÈÈÈ
F ÞÌ	Š	Ý	I È

6 Ug]W@ UX'7 UgYg

	ÓŠÔÁÖ^∙&¦∄jcā[}	Ôæe^*[¦^	ÝÁÕ¦æçãcî	ΫÁÕ¦æçãcî	RĮą̃c	Ú[ậc	Öã⊧dããč ơ^å
F	YājaÁŠ[æå	ΥŠ			F		
G	Ö^æåÁŠ[æå	ÖŠ					F

9bjY`cdY`AUI]aia`AYaVYf`GYWFjcb`:cfW¥g

	T^{ à^¦		Œka梎á	ŠĮ &Žcá	ŠÔ	Ù@æłŽá	ŠĮ &Žcá	ŠÔ	T[{^}cŽİ Ëcá	ŠĮ &Žcá	ŠÔ
F	TF	{ 28¢	FÈUF	FŒÌŦ€I	FΪ	È	GÈ€IG	FΪ	ÈIH	GÈ€IG	FΪ
G		{ a	ËĖH	€	FΪ	Ë€ËG	€	FΪ	Ë€GÎ	FFÈJÍÌ	FΪ
Н	TG	{ æ¢	ÏÈÎJ	€	J	Ì€GH	ΙÈÈÌΗ	FΪ	ÈFF	IÈ€ÌH	J

	T^{ à^¦		OE¢ã梎á	ŠĮ &Žcá	ŠÔ	Ù@æłŽá	ŠĮ &Žcá	ŠÔ	T[{^}cŽŤËcá	ŠĮ &Žcá	ŠÔ
	In ani	{ a	<u> </u>	FŒE	FÏ		GEEIG	<u> </u>		FÈJÎ	J
Í	TI	{ 260¢	<u> </u>	€	FÎ	€	€	 F	€	€	F
î		{ a	ËĒJF	€	FÏ	€	€	F	€	€	F
Ï	ΤÍ	{ 38¢	FEGÏ	€	FÏ	€	€	F	€	€	F
		{ a		€	F	€	€	F	€	€	F
	ΤÎ		 E€JF	€	FÎ	€	€	F	€	€	F
J	11	{ 38¢	ËFÈFÍ		FÏ						
F€	τï	{]		€		€	€	F	€	€	F
FF	ΤÏ	{ 38¢	<u>FÈGÏH</u>	€	ΓÏ	€	€		€	€	F
FG	T)	{]		€	F FÎ	€	€	F	€	€	F
FH	TÌ	{ 38¢	<u>È</u>	€		€	€		€	€	F
FI		{]		€	FÏ	€	€	F	€	€	F
FÍ	TJ	{ 38¢	FÈGÎÌ	€	FÏ	€	€	F	€	€	F
FÎ		{ a		€	F	€	€	<u> </u>	€	€	F
FÏ	TF€	{ 260¢	È€JI	€	FÎ	€	€	<u> </u>	€	€	F
FÌ		{ а	ËÈH	€	FÏ	€	€	F	€	€	F
FJ	TFF	{ 38¢	FÈG	€	FÏ	€	€		€	€	F
G€		{ а	Ê	€	F	€	€	F	€	€	F
GF	TFG	{ 28¢	È€JI	€	FÎ	€	€	F	€	€	F
GG	_	{ а	ËÈG	€	FÏ	€	€	F	€	€	F
GH	T FH	{ 26¢	FÉG G	€	FΪ	€	€	F	€	€	F
G		{ ā	i î∰	€	F	€	€	F	€	€	F
GÍ	T FI	{ 26¢	<u>È</u> I	€	FÎ	€	€	F	€	€	F
Ĝ		{ ā	ËÐŔ	€	FΪ	€	€	F	€	€	F
Ğ	<u> </u>	{ 28¢	FÈH	€	FΪ	€	€	F	€	€	F
GÌ		{ a	ÊÊÊÎ	€	F	€	€	F	€	€	F
GJ	T FÎ	{ æ¢	È€JÎ	€	FÎ	€	€	F	€	€	F
H€		{ a	ËÈÎÏ	€	FΪ	€	€	F	€	€	F
HF	ΤFΪ	{ 28¢	GĚJÌ	FGÌF€I	J	È€HH	F€ÈÉÎH	J	ÈI	GÈ€IG	J
HG		{ a	ËÈJÏ	€	FΪ	Ë€ËF	€	J	Ë€€Î	FFÈJÍÌ	J
HH	T FÌ	{ 28¢	ÌÈH€H	€	J	È€G	ΙÈÈΗ	J	ÈE€Ï	ΙÈÈÌΗ	FΪ
H		{ a	ËEGÍF	FŒÌŦ€I	J	Ë€ÎH	GÈ€IG	J	ËEFÏ	FÈJÎ	J
HÍ	T FJ	{ 28¢	ii£eí ì	€	FÌ	€	€	F	€	€	F
HÎ		{ a	ËGÈ€ÏÎ	€	J	€	€	F	€	€	F
ΗΪ	TG€	{ æ¢	FĚ€J	€	J	€	€	F	€	€	F
HÌ		{ a	È	€	FÌ	€	€	F	€	€	F
HJ	TGF	{ æ¢	ÊÉÉÎ	€	FÌ	€	€	F	€	€	F
€		{ a	ËGÌ€GJ	€	J	€	€	F	€	€	F
IF	TGG	{ 28¢	FÈHFJ	€	J	€	€	F	€	€	F
IG		{ a	È€HJ	€	FÌ	€	€	F	€	€	F
IH	TGH	{ 28¢	Ē	€	FÌ	€	€	F	€	€	F
		{ ā	ËÈI	€	J	€	€	F	€	€	F
IÍ	TG	{ 28¢	FÈŃÏ	€	J		€	F	€	€	F
I Î		{ a	È€HJ	€	FÌ	€ €	€	F	€	€	F
ΪΪ	ΤGÍ	{ 28¢	Ê	€	FÌ	€	€	F	€	€	F
		{ a	ËÐIÎ	€	J	€	€	F	€	€	F
IJ	ТĜ	{ 28¢	FÈIIÍ	€	J	€	€	F	€	€	F
Í€	10	{ a	È€HJ	€	FÌ	€	€	F	€	€	F
ÍF	ТĠ	{ 26¢		€	FÌ	f	€	F	€	€	F
ÍG	T G	{ a		€	J	€	€	F	€	€	F
ÍH	ΤĠ	{ 28¢	FÉLÍG	€	J	€	€	F	€	€	F
ÍI	T GI	{ 244¢	<u></u> E⊟UG	€	FÌ	€	€	F	€	€	F
ÍÍ	TGJ		<u>∎</u> EE€ÍÍ	€ €	FÌ			F	€	€	
	7/05/23	{ 38¢		€	ы	€	€			tenage 13 of 61	F
	1116/113								Pa		

9bjY`cdY`AUI]aia`AYaVYf`GYWF]cb`:cfWYg`f77cbh]biYXŁ

	T^{ à^¦		Œcãæ¢Žá	ŠĮ &Žcá	ŠÔ	Ù@æŽá	Š[&Žcá	ŠÔ	T[{ ^} oŽ Ëcá	ŠĮ &Žcá	ŠÔ
ĺÎ		{ ā	ËFÈFÌ	€	J	€	€	F	€	€	F
ĺΪ	TH€	{ 26¢	FÈHÌ	€	J	€	€	F	€	€	F
ÍÌ		{ ā	ÈIF	€	FÌ	€	€	F	€	€	F
ÍJ	THF	{ æ¢	ËÊ I	€	FÌ	€	€	F	€	€	F
΀		{ a	ËGÌ€GÏ	€	J	€	€	F	€	€	F
ÎF	T HFCE	{ 26¢	GĒLÍÎ	€	FΪ	FÈE	FIÈ€JÎ	J	HÈHGJ	FHÈJH	J
ÎG		{ a	Ë€€I	€	F	ËÌÌÍ	FHÈJH	J	ËGÊ	FÈJ	FΪ

9bjY`cdY`AUIjaia`AYaVYf`GYWhjcb`:cfWYg`fh7cbhjbiYXŁ

9bjYcdYAYaVYf9bXFYUWJcbg

	T^{ à^¦	T^{ à^誰		OF¢ãæe†Žá	ŠÔ	Ù@æĺŽá	ŠÔ	T[{^}oŽtËcá	ŠÔ
F	TF		æ¢	Ê€	FÎ	€	F	€	F
G		{	ā	ÊÊH	FΪ	ĒĒĒG	FΪ	€	F
Н		R {	æ¢	FÈUF	FΪ	Ì€€I	F	€	F
		{	ą	ËGFF	F	ËEFH	FΪ	€	F
Í	ΤG	Q {	æ¢	ΪÈÎJ	J	Ì€€Ì	J	€	F
Î		{	ą	È	FÌ	€	F	€	F
Ï		R {	æ¢	Ě١	FÎ	Ì€€H	F	€	F
Ì		{		ÊÛÍ	FΪ	Ë€€€G	FΪ	€	F
J	ΤI	Q {	8	È€ï	FÎ	€	F	€	F
F€		{	n a	ËFÈJF	FΪ	€	F	€	F
FF		R {	æ	È€ï	FÎ	€	F	€	F
FG		{	ą	ËFÈJF	FΪ	€	F	€	F
FH	ТÍ	Q {	æ¢	FÈGÏ	FΪ	€	F	€	F
FI		{	ą	Ê	F	€	F	€	F
FÍ		R {	æ¢	FÈGÏ	FΪ	€	F	€	F
FÎ		{	ą	Ê	F	€	F	€	F
FΪ	ΤÎ	Q {	æ	È€JF	FÎ	€	F	€	F
FÌ		{	ą	ËFÈFÍ	FΪ	€	F	€	F
FJ		R {	æ¢	È€JF	FÎ	€	F	€	F
G€		{	ą	ËFÈFÍ	FΪ	€	F	€	F
GF	ТЇ	Q {	æ¢	FÈGÏH	FΪ	€	F	€	F
GG		{	ą	É É É É É	F	€	F	€	F
GH		R {	æ¢	FÈGÏH	FΪ	€	F	€	F
G		{	ą	ÊÊÎ	F	€	F	€	F
GÍ	<u> </u>	Q {	æ¢	È€JI	FÎ	€	F	€	F
Ĝ		{	ą	ËFÈH	FΪ	€	F	€	F
Ğ		R {	æ¢	È€JI	FÎ	€	F	€	F
Ġ		{	ą	ËFÈH	FΪ	€	F	€	F
GJ	ТJ	Q {	æ¢	FÈGÌ	FÏ	€	F	€	F
H€		{	ą		F	€	F	€	F
HF		R {	æ¢	FÉGÌ	FΪ	€	F	€	F
HG		{	ą	É É É É É	F	€	F	€	F
HH	TF€	Q {	æ¢	<u>È</u>	FÎ	€	F	€	F
H		{	ą	ËÈH	FÏ	€	F	€	F
HÍ		R {	æ¢	<u>È</u>	<u> </u>	€	F	€	F
HÎ		{	ą	ËÈĤ	FÏ	€	F	€	F
ΗΪ	T FF	Q {	æ¢	FÈ	FΪ	€	F	€	F
HÌ		{	ą	Ê	F	€	F	€	F
HJ		R {	æ¢	FÈG	FΪ	€	F	€	F
∣€		{	ą.	Ê	F	€	F	€	F

9bjYcdYAYaVYf9bXFYUWfjcbgff/cbhjbiYXŁ

			0		ĂÂ	ùo ı≚ /	ĂÂ		čô
	T^{ à^¦		~~~	O≣¢ãa¢Žá	ŠÔ FÎ	Ù@æłŽá	ŠÔ	T[{^}oŽËcá	ŠÔ
I F I G	T FG		20¢	È€JI ËFÈGJ	FÏ	€	F	€	F
			ą –		FI FÎ		F	€	F
1H			26¢	ÈEJI ËFÈGJ	FÏ	€	F	€	F
	TEU		ą –	FEGIG	FÏ	€	F	€	F
	T FH		æ¢ aj		F	€	F	€	F
				FEGIG	FÏ	€	F	€	F
			æ¢ a}		F	€	F	€	F
IJ	T FI		9 39⊄	EJI	 FÎ	€	F	€	F
Í€			a a	ËĐR	FÏ	€	F	€	F
ÍF			9 38¢	 E€JI	FÎ	€	F	€	F
ÍG			a a	ËĐR	FÏ	€	F	€	F
ÍH	T FÍ		9 38¢	FÈH	ΓΪ	€	F	€	F
ÍI			aj		F	€	F	€	F
ÍÍ			9 38¢	FÈH	ΓΪ	€	F	€	F
ÍÎ			aj.		F	€	F	€	F
ÍÏ	T FÎ		9 38¢	EJÎ	FÎ	€	F	€	F
ÎÌ			a a	ËÐÎÏ	FÏ	€	F	€	F
ÍJ			9 38¢	 E€JÎ	FÎ	€	F	€	F
΀			ā	ËÐÎÏ	FΪ	€	F	€	F
ÎF	T FÏ		9 38¢	ĒJÌ	FÎ	€	FÌ	€	F
ÎG			a a	ËÐJÏ	FΪ	ĒĒ F	J	€	F
ÎH			9 38¢	GĚJÌ	J	ÊÊ€€H	FÌ	€	F
ÎI			ā	ÊĤÌ	FÌ	Ê	J	€	F
ÎÍ	T FÌ		9 38¢	ÌÈHEH	J	È€€J	J	€	F
ÎÎ			a a	ÊÎÎ	FÌ	€	FÌ	€	F
ÎΪ			9 38¢		FÌ	ËÊ€€G	FÌ	€	F
ÎÌ			ā	ĒG F	J	Ë	J	€	F
ÎJ	T FJ		9 38¢		FÌ	€	F	€	F
Ï€			ą	ËGËEÏÎ	J	€	F	€	F
ΪF					FÌ	€	F	€	F
ΪG			ā	Ë E	J	€	F	€	F
ΪΗ	TG€		-7 39¢	FĚ€J	J	€	F	€	F
ΪΙ			ą	È	FÌ	€	F	€	F
ΪÍ			9 8¢	FĚ€J	J	€	F	€	F
ΪÎ			ą	È	FÌ	€	F	€	F
ΪΪ	TGF		9¢	Î	FÌ	€	F	€	F
ΪÌ			ą	ËGÈ€GJ	J	€	F	€	F
ΪJ			æ¢	Ê	FÌ	€	F	€	F
Ì€			ą	ËGÈ€GJ	J	€	F	€	F
ÌF	TGG	Q { i	æ¢	FÈHFJ	J	€	F	€	F
ÌG			ą	È€HJ	FÌ	€	F	€	F
ÌН			æ¢	FÈHFJ	J	€	F	€	F
ÌI			ą	È€HJ	FÌ	€	F	€	F
ÌÍ	TGH		æ¢	Ê	FÌ	€	F	€	F
ÌÎ		{	ą	ËÈI	J	€	F	€	F
ÌÏ		R { ;	æ¢	Ê	FÌ	€	F	€	F
ìì			ą	ËÈI	J	€	F	€	F
ÌJ	ΤG		æ¢	FĚÍÍ	J	€	F	€	F
J€		{	ą	È€HJ	FÌ	€	F	€	F
JF			æ¢	FĖHÍÏ	J	€	F	€	F
JG		{	ą	Ì€HJ	FÌ	€	F	€	F
	07/05/23							Page 15 of	C1

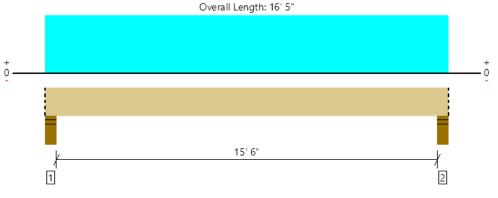
9bjYcdYAYaVYf9bXFYUWfjcbgff/cbhjbiYXŁ

	T^{ à^¦	_T^{ à^崖		OE¢ã梎á	ŠÔ	Ù@æłŽá	ŠÔ	T[{^}cŽiËcá	ŠÔ
JH	ТĆÍ	Q	{ 28¢	Ê	FÌ	€	F	€	F
JI			{ a	ËÈIÎ	J	€	F	€	F
JÍ		R	{ 260	ÊÉÉÍÎ	FÌ	€	F	€	F
JÎ			{ ā	ËÈIÎ	J	€	F	€	F
JÏ	ТĜ	Q	{ 260	FÈHÍ	J	€	F	€	F
JÌ			{ a	È€HJ	FÌ	€	F	€	F
JJ		R	{ 28¢	FÈHÍ	J	€	F	€	F
F€€			{ a	È€HJ	FÌ	€	F	€	F
F€F	ТĠ	Q	{ 28¢	ËÉÉÍÏ	FÌ	€	F	€	F
F€G			{ a	ÌÉË	J	€	F	€	F
F€H		R	{ 28¢	ËEÉÍÏ	FÌ	€	F	€	F
F€			{ a	ÌÉË	J	€	F	€	F
F€Í	ТĠ	Q	{ 28¢	FÈHÍ G	J	€	F	€	F
F€Î			{ a	È€HJ	FÌ	€	F	€	F
F€Ï		R	{ 28¢	FÈHÍ G	J	€	F	€	F
F€Ì			{ ā	È€HJ	FÌ	€	F	€	F
F€J	ΤGJ	Q	{ æ¢	ÉÉÉÍ	FÌ	€	F	€	F
FF€			{ ā	ËÈÌÌ	J	€	F	€	F
FFF		R	{ æ¢	ΪΞΞΞ	FÌ	€	F	€	F
FFG			{ ā	ËÈĤ	J	€	F	€	F
FFH	TH€	Q	{ æ¢	FÈHÌ	J	€	F	€	F
FFI			{ ā	È F	FÌ	€	F	€	F
FFÍ		R	{ æ¢	FÈHÌ	J	€	F	€	F
FFÎ			{ ā	È F	FÌ	€	F	€	F
FFÏ	THF	Q	{ æ¢	ËÊ I	FÌ	€	F	€	F
FFÌ			{ ā	ËGÈ€GÏ	J	€	F	€	F
FFJ		R	{ æ¢	ËÊ I	FÌ	€	F	€	F
FŒ			{ ā	ËGÈ€GÏ	J	€	F	€	F
FŒ	T HFCE	Q	{ 26¢	GĒLÍÎ	FΪ	FÈIJÍ	FΪ	€	F
FGG			{ ā	Ë€€	F	ËGFF	F	€	F
FGH		R	{ 26¢	FÈ	J	FËFI	J	€	F
FG			{ ą	È G	FÌ	ÈG	FÌ	€	F

<u>9bjYcdYKccX7cXY7\YWg</u>

	T^{ à^¦	Ù@#}^	Ô[å^ÁÔ@^&\	ŠI &Ž	ŤŠÔ	Ù@æĤ	Ĕĭ &Ä	ŤŠÔ	Ø86AŽÈ ÈÈ	ð Áð Ó	ããØàØÃXË	ÈCCAXÈÈ	ÜÓ	ÔŠ	ÔÚ	Ò ٚ}
F	TF	IĚÝÍÈ		FÈLJÎ	FΪ	Ì€FÎ	€	FΪ	FÈ€	ĔÍÎ	FÈJI	ÈGÏGÎ	ĔÍÍ	ÈJÍ	ΗÍĠ	HÈË
G	ΤG	IĚÝÍ	E È J	€	J	È€FI	GÈ€l G	J	FÈ€	ĔÍÎ	FÈJI	ÈGÏGÎ	ĔÍÍ	ÌLĖ	ΒÌΗ	HÊÈH
Н	TI	GÝÎ	ÈΕJΙ	€	FΪ	È€€€	€	FÌ	ÈÏÍ	FÈÈÌ	FÈIÏ	ÈGÌÌ.	JÈ€FÌ	ΪÍĠ	ÈÎ Ì	HÈËF
	ΤÍ	GÝÎ	ÈE€G	€	FΪ	È€€€	€	FÌ	FĚF	FÈÌÎ	FÈÍÎ	ÉGÌÌÏ	É€Í	ÈJF	ÊΗ	HÊÈH
Í	ΤÎ	GÝÎ	ÈÌÎ	€	FΪ	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	ÈÈÈÌ.	JÈ€FÌ	ΪÍĠ	ÈÊÌ	HÈËF
Î	ΤÏ	GÝÎ	ÈE€G	€	FΪ	È€€€	€	FÌ	FĚF	FÈÌÎ	FÈÍÎ	l È Gì Ì Ï	Ě€Í	ÈJF	ÊΗ	HÊÈH
Ï	ΤÌ	GÝÎ	ÈÌJ	€	FΪ	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	ÈGÌÌ.	JÈ€FÌ	ΪĺΒ	ÌÌ	HÈËF
Ì	ΤJ	GÝÎ	ÈE€G	€	FΪ	È€€€	€	FÌ	FĚF	FÈÌÎ	FÈÍÎ	ĒGÌÌÏ	Ě€Í	ÈJF	ÊΗ	HÊÈH
J	TF€	GÝÎ	ÈÌÌ	€	FΪ	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	ÈGÌÌ.	JÈ€FÌ	ΪĺΒ	Ì	HÈË
F€	TFF	GÝÎ	È€H	€	FΪ	È€€€	€	FÌ	FĚF	FÈÌÎ	FÈÍÎ	İ ÉGÌ Ì Ï	É€Í	ÈJF	ÊΉ	HÊÈH
FF	TFG	GÝÎ	ÈÌÌ	€	FΪ	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	ÈGÌÌ.	JÈ€FÌ	ΒÌΪ	Ì Ì Ì	HÈË
FG	TFH	GÝÎ	È€€	€	FΪ	È€€€	€	FÌ	FĚF	FÈÌÎ	FÈÍÎ	ĒGÌÌÏ	É€Í	₿JF	ÊΗ	HÊÈH
FH	TFI	GÝÎ	ÈJÏ	€	FΪ	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	ÈGÌÌ,	JÈ€FÌ	ΪĺΒ	ÌÌ	HÈË
FI	T FÍ	GÝÎ	ÈFÍ	€	FΪ	È€€€	€	FÌ	FĚF	FÈÌÎ	FÈÍÎ	İ ÉGÌ Ì Ï	É€Í	ÈJF	ÊΉ	HÊÈH
FÍ	T FÎ	GÝÎ	ÌG€G	€	FΪ	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	ÈÈÈÌ,	JÈ€FÌ	ΪÍĠ	ÈĤÌ	HÈËF

9bjYcdYKccX7cXY7\YWgff7cbfjbiYXŁ


	T^{ à^¦	Ù@a∯_^	Ô[å^ÁÔ@^&\	Š[&Ž∄	ÊŠÔ	Ù@æĤ	Ĕ 8Ž	ŤŠÔ	Ø86ÁŽ 🗎	ÈCÁŽ•2	ăØàØÂXÈÈ	ÈQÇQÂXÊ	ÈÜÓ	ÔŠ	ÔÚ	Ò~}
FÎ	ΤFΪ	IĚÝÍ 🇰	ÈĤ€	FÈLJÎ	FΪ	Ì€EFÎ	€	J	FÈ€		FÈJI	ÈÏG		ÌL⊟	ΗÍŒ	HÈË
FÏ	T FÌ	IĚÝÍ	ÈH€Í	€	J	Ì€FI	GÈ€I G	J	FÈ€	ĔÍÎ	FÈJI	ÈÏG	ĴĖĽÍ	ÈJÍ	ΒÌΗ	HÊÈH
FÌ	TFJ	GÝÎ	ÈGFH	€	J	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	ÈÈÌÌ	JÈ€FÌ	ΪÍĠ	ÈĤÌ	HÈË
FJ	TG€	GÝÎ	ÈGF	€	J	È€€€	€	FÌ	FĚF	FÈÌÎ	FÈÍÎ	ÈÈÌÌ	ΪĚ€Í	ÈJF	ÊΗ	HÊÈH
G€	TGF	GÝÎ	ÌG€Ì	€	J	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	ÈÈÌÌ	JÈ€FÌ	ΪÍĠ	Е́Ц	HÈË
GF	ΤGG	GÝÎ	È€Î	€	J	È€€€	€	FÌ	FĚF	FÈÌÎ	FÈÍÎ	ÈÈÌÌ	ΪĚ€Í	ÈJF	ÊΗ	HÊÈH
GG	ТGН	GÝÎ	ΈJJ	€	J	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	ÈÈÌÌ	JÈ€FÌ	ΪÍĠ	ÈĤÌ	HÈË
GH	ΤG	GÝÎ	È€J	€	J	È€€€	€	FÌ	FĚF	FÈÌÎ	FÈÍÎ	ÈÈÌÌ	ΪĚ€Í	ÈJF	ÊΗ	HÊÈH
G	ΤĠ	GÝÎ	È€€€	€	J	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	ÈÈÌÌ	JÈ€FÌ	ΪÍĠ	ÈĤÌ	HÈË
GÍ	ΤĜ	GÝÎ	È€Ì	€	J	È€€€	€	FÌ	FĚF	FÈÌÎ	FÈÍÎ	ÈÈÌÌ	ΪĚ€Í	ÈJF	ÊΗ	HÊÈH
Ĝ	ΤĠΪ	GÝÎ	È€€€	€	J	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	ÈÈÌÌ	JÈ€FÌ	ΪÍĠ	ÈĤÌ	HÈË
Ğ	ΤĠÌ	GÝÎ	È€J	€	J	È€€€	€	FÌ	FĚF	FÈÌÎ	FÈÍÎ	ÈÈÌÌ	ΪĚ€Í	ÈJF	ÊΗ	HÊÈH
Ġ	ΤGJ	GÝÎ	ÈIJΪ	€	J	È€€€	€	FÌ	Èïí	FÈÌ	FÈIÏ	ÈÈÌÌ	JÈ€FÌ	ΪÍĠ	Е́Ц	HÈË
GJ	TH€	GÝÎ	È€Ì	€	J	È€€€	€	FÌ	FĚF	FÈÌÎ	FÈÍÎ	ÈÈÌÌ	ΪĚ€Í	ÈJF	ÊΗ	HÊÈH
H€	THF	GÝÎ	È€Ì	€	J	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	ÈÈÌÌ	JÈ€FÌ	ΪÍĠ	ÈĤÌ	HÈË
HF	THFCE	I ÝFG	ÈIJ	FHÈH	J	ÈÎG	FIÈ€ÈÈ	ÊJ	GĚÎ	FËÎ	HĒLÎ	ÈG	FFÈÏ	Ìά	F	НЭЁН

Roof Framing, RB1 1 piece(s) 6 3/4" x 18" 24F-V4 DF Glulam

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	18748 @ 4"	23203 (5.50")	Passed (81%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	14275 @ 1' 11 1/2"	24685	Passed (58%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	70823 @ 8' 2 1/2"	80603	Passed (88%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.475 @ 8' 2 1/2"	0.788	Passed (L/398)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.536 @ 8' 2 1/2"	1.050	Passed (L/353)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 0.96 that was calculated using length L = 15' 9".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	5.50"	5.50"	4.44"	2126	16622	18748	Blocking
2 - Stud wall - DF	5.50"	5.50"	4.44"	2126	16622		Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

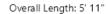
Lateral Bracing	Bracing Intervals	Comments							
Top Edge (Lu)	16' 5" o/c								
Bottom Edge (Lu)	16' 5" o/c								
•Maximum allowable bracing intervals based on applied load.									

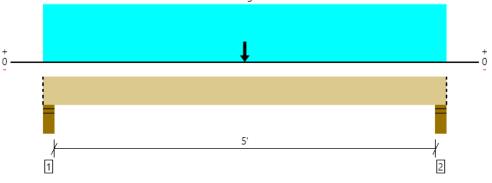
m allowable bracing intervals based on applied load

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 16' 5"	N/A	29.5		
1 - Uniform (PSF)	0 to 16' 5" (Front)	13' 6"	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Trevor Steelsmith07/05/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com

Roof Framing, RB2 1 piece(s) 5 1/8" x 12" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	10653 @ 4"	17617 (5.50")	Passed (60%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	10023 @ 1' 5 1/2"	12495	Passed (80%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	26097 @ 2' 11 1/2"	28290	Passed (92%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.070 @ 2' 11 1/2"	0.262	Passed (L/900)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.079 @ 2' 11 1/2"	0.350	Passed (L/797)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 5' 3".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	5.50"	5.50"	3.33"	1233	9420	10653	Blocking
2 - Stud wall - DF	5.50"	5.50"	3.33"	1233	9420	10653	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	5' 11" o/c				
Bottom Edge (Lu) 5' 11" o/c					
•Maximum allowable bracing intervals based on applied load					

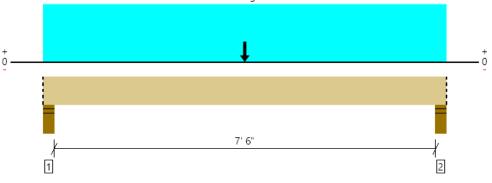
um allowable bracing intervals based on applied load

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 11"	N/A	14.9		
1 - Uniform (PSF)	0 to 5' 11" (Front)	2' 6"	17.0	150.0	Default Load
2 - Point (lb)	2' 11 1/2" (Front)	N/A	2126	16622	Linked from: RB1, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Trevor Steelsmith07/05/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com

Roof Framing, RB3 1 piece(s) 5 1/8" x 15" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	11210 @ 4"	17617 (5.50")	Passed (64%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	10464 @ 1' 8 1/2"	15618	Passed (67%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	39599 @ 4' 2 1/2"	44203	Passed (90%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.119 @ 4' 2 1/2"	0.387	Passed (L/781)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.135 @ 4' 2 1/2"	0.517	Passed (L/690)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 7' 9".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	5.50"	5.50"	3.50"	1320	9889	11210	Blocking
2 - Stud wall - DF	5.50"	5.50"	3.50"	1320	9889	11210	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	8' 5" o/c				
Bottom Edge (Lu) 8' 5" o/c					
•Maximum allowable bracing intervals based on applied load.					

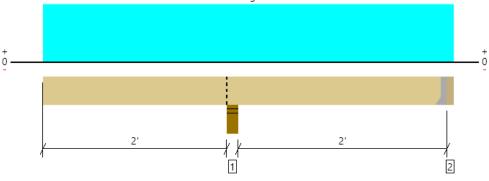
ium allowable bracing intervals based on applied load

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 5"	N/A	18.7		
1 - Uniform (PSF)	0 to 8' 5" (Front)	2' 6"	17.0	150.0	Default Load
2 - Point (lb)	4' 2 1/2" (Front)	N/A	2126	16622	Linked from: RB1, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Trevor Steelsmith07/05/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com

Roof Framing , Outlookers 1 piece(s) 2 x 6 DF No.2 @ 24" OC

Overall Length: 4' 9"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1489 @ 2' 2 3/4"	5156 (5.50")	Passed (29%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	515 @ 1' 6 1/2"	1139	Passed (45%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	-830 @ 2' 2 3/4"	975	Passed (85%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.104 @ 0	0.223	Passed (2L/514)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.115 @ 0	0.297	Passed (2L/464)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

PASSED

• Deflection criteria: LL (L/240) and TL (L/180)

• Overhang deflection criteria: LL (2L/240) and TL (2L/180).

• Left cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.

· Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	5.50"	5.50"	1.59"	152	1338	1489	Blocking
2 - Hanger on 5 1/2" DF beam	3.50"	Hanger ¹	1.50"	10	255/-80	265/-70	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• 1 See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	4' 6" o/c				
Bottom Edge (Lu)	4' 6" o/c				
Maximum alloughle having intervale based on applied land					

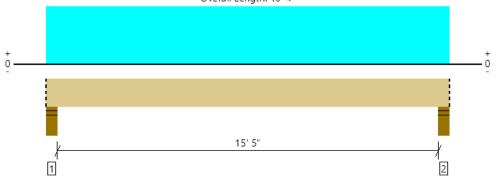
•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-1	īe					
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	LU26	1.50"	N/A	6-10dx1.5	4-10dx1.5	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 4' 9"	24"	17.0	150.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weverhaeuser

ForteWEB Software Operator	Job Notes
Trevor Steelsmitt 07/05/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com	

Overall Length: 16' 4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	9728 @ 4"	23203 (5.50")	Passed (42%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	7842 @ 1' 7"	18514	Passed (42%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	36545 @ 8' 2"	46687	Passed (78%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.571 @ 8' 2"	0.783	Passed (L/329)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.648 @ 8' 2"	1.044	Passed (L/290)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 0.99 that was calculated using length L = 15' 8".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	5.50"	5.50"	2.31"	1153	8575	9728	Blocking
2 - Stud wall - DF	5.50"	5.50"	2.31"	1153	8575	9728	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

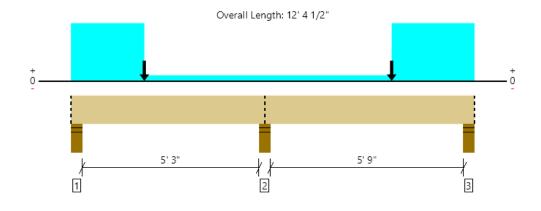
Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	16' 4" o/c					
Bottom Edge (Lu)	16' 4" o/c					
Maximum allowable bracing intervals based on applied load.						

um allowable bracing intervals based on applied load

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 16' 4"	N/A	22.1		
1 - Uniform (PSF)	0 to 16' 4" (Front)	7'	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Trevor Steelsmith07/05/23
Snake River Engineering
(208) 453-6512
trevor@snakeriverengineering.com

2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	12064 @ 5' 11 1/4"	12031 (5.50")	Passed (100%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	6192 @ 1' 5 3/8"	9081	Passed (68%)	1.15	1.0 D + 1.0 S (Alt Spans)
Moment (Ft-lbs)	13529 @ 9' 10"	20525	Passed (66%)	1.15	1.0 D + 1.0 S (Alt Spans)
Live Load Defl. (in)	0.089 @ 9' 10"	0.153	Passed (L/820)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.102 @ 9' 10"	0.305	Passed (L/722)		1.0 D + 1.0 S (Alt Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Sup				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories	
1 - Stud wall - DF	5.50"	5.50"	3.17"	912	112/-17	6024	6936	Blocking	
2 - Stud wall - DF	5.50"	5.50"	5.51"	1638	293	10426	12064	Blocking	
3 - Stud wall - DF	5.50"	5.50"	3.14"	938	120/-12	5927	6865	Blocking	
Blocking Panels are assumed to carry no load	s annlied dire	Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

 Lateral Bracing
 Bracing Intervals
 Comments

 Top Edge (Lu)
 10' o/c

 Bottom Edge (Lu)
 12' 5" o/c

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 4 1/2"	N/A	12.1			
1 - Uniform (PSF)	0 to 2' 3" (Front)	2' 6"	17.0	-	150.0	Default Load
2 - Point (lb)	2' 3" (Front)	N/A	1320	-	9889	Linked from: RB3, Support 1
3 - Uniform (PSF)	0 to 12' 4 1/2" (Front)	1'	12.0	40.0	-	Default Load
4 - Uniform (PSF)	9' 10" to 12' 4 1/2" (Front)	2' 6"	17.0	-	150.0	Default Load
5 - Uniform (PSF)	0 to 2' 3" (Front)	9'	8.0	-	-	Default Load
6 - Uniform (PSF)	9' 10" to 12' 4 1/2" (Front)	9'	8.0	-	-	Default Load
7 - Point (lb)	9' 10" (Front)	N/A	1320	-	9889	Linked from: RB3, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Trevor Steelsmitt 07/05/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com	

5/5/2023 7:51:01 PM UTC Page 23 of 61 ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 2023-4982 Kozita Residence Page 8 / 19

Floor Framing, FB4 1 piece(s) 8 3/4" x 18" 24F-V4 DF Glulam

PASSED

9' 2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	27393 @ 9' 11"	41016 (7.50")	Passed (67%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	27311 @ 8' 3 1/2"	31999	Passed (85%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	52396 @ 8'	107182	Passed (49%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.073 @ 5' 8 7/16"	0.235	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.086 @ 5' 8 3/16"	0.471	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

n

2

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

0

• Critical positive moment adjusted by a volume factor of 0.99 that was calculated using length L = 9' 5".

1

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	7.50"	7.50"	1.72"	1755	7627	9382	Blocking
2 - Stud wall - DF	7.50"	7.50"	5.01"	3785	23607		Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	10' 5" o/c					
Bottom Edge (Lu)	10' 5" o/c					
Maximum allowable bracing intervals based on applied load.						

m allowable bracing intervals based on applied load

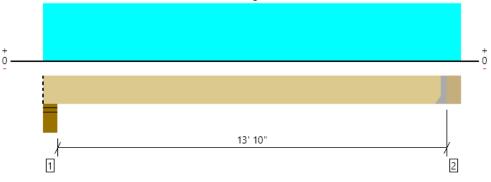
			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 10' 5"	N/A	38.3		
1 - Uniform (PSF)	0 to 8' (Front)	2' 6"	17.0	150.0	Default Load
2 - Uniform (PSF)	0 to 8' (Front)	9'	12.0	-	Default Load
3 - Point (lb)	8' (Front)	N/A	2163	14054	Linked from: FB6, Support 1
4 - Point (Ib)	8' (Front)	N/A	1775	14180	Linked from: FB5, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Trevor Steelsmith07/05/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com


5/5/2023 7:51:01 PM UTC Page 24 of 61 ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: 2023-4982 Kozita Residence Page 9 / 19

Floor Framing, FB5 1 piece(s) 5 1/2" x 18" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	14737 @ 14' 5"	14737 (4.12")	Passed (100%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	11570 @ 12' 11"	20114	Passed (58%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	51426 @ 7' 5 1/4"	67850	Passed (76%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.333 @ 7' 5 1/4"	0.349	Passed (L/503)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.375 @ 7' 5 1/4"	0.698	Passed (L/447)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 0.99 that was calculated using length L = 13' 11 1/2".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	7.00"	7.00"	4.57"	1759	13945	15705	Blocking
2 - Hanger on 18" DF beam	7.00"	Hanger ¹	4.12"	1775	14180	15955	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• 1 See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	14' 5" o/c					
Bottom Edge (Lu)	14' 5" o/c					
Maximum allamakla kursina inkurala kanadan amilindand						

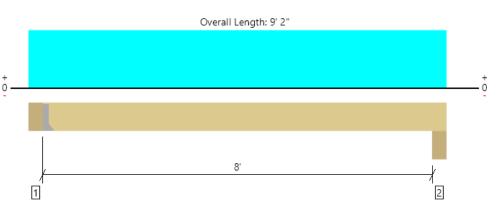
Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
2 - Face Mount Hanger	HHGU5.50-SDS H=18	5.25"	N/A	44-SDS25212	28-SDS25212				

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 14' 5"	N/A	24.1		
1 - Uniform (PSF)	0 to 15' (Front)	12' 6"	17.0	150.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser

ForteWEB Software Operator	Job Notes	
Trevor Steelsmitt07/05/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com		,

Floor Framing, FB6 1 piece(s) 5 1/8" x 13 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	14189 @ 7"	14189 (4.26")	Passed (100%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	10260 @ 1' 8 1/2"	14057	Passed (73%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	28821 @ 4' 7 3/4"	35805	Passed (80%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.157 @ 4' 7 3/4"	0.203	Passed (L/622)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.181 @ 4' 7 3/4"	0.406	Passed (L/538)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 8' 1 1/2".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Hanger on 13 1/2" DF beam	7.00"	Hanger ¹	4.26"	2163	14054	16216	See note 1
2 - Beam - DF	7.00"	7.00"	4.93"	2114	13676	15790	None

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• 1 See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 7" o/c	
Bottom Edge (Lu)	8' 7" o/c	

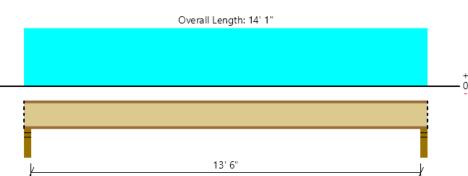
Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model Seat Length Top Fasteners Face Fasteners		Member Fasteners	Accessories					
1 - Face Mount Hanger	HHGU5.25-SDS H=13.5	5.25"	N/A	44-SDS25212	28-SDS25212				
Refer to manufacturer notes and instructions for proper installation and use of all connectors									

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	7" to 9' 2"	N/A	16.8		
1 - Uniform (PSF)	0 to 9' 2" (Front)	20' 2"	17.0	150.0	Default Load
2 - Uniform (PSF)	0 to 9' 2" (Front)	9'	12.0	-	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Trevor Steelsmith07/05/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com

Floor Framing, Upper Floor Joists 1 piece(s) 11 7/8" TJI ® 110 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	732 @ 2 1/2"	1375 (3.50")	Passed (53%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	702 @ 3 1/2"	1560	Passed (45%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2428 @ 7' 1/2"	3160	Passed (77%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.211 @ 7' 1/2"	0.342	Passed (L/779)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.274 @ 7' 1/2"	0.683	Passed (L/599)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	43	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

2

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.A structural analysis of the deck has not been performed.

0

1

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.75"	169	563	732	Blocking
2 - Stud wall - DF	3.50"	3.50"	1.75"	169	563	732	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	3' 7" o/c					
Bottom Edge (Lu)	14' 1" o/c					
TTT isish ang ank ang ang ang ang ang ang ang ang ang ang						

TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 14' 1"	24"	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Trevor Steelsmitt07/05/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com

Floor Framing, Upper Floor Joists 2 1 piece(s) 11 7/8" TJI ® 110 @ 24" OC

Overall Length: 7' 1"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	342 @ 6' 9 1/2"	910 (1.75")	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	342 @ 6' 9 1/2"	1560	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	563 @ 3' 6"	3160	Passed (18%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.017 @ 3' 6"	0.165	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.023 @ 3' 6"	0.329	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	63	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

0

A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser EdgeTM Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.75"	84	280	364	Blocking
2 - Hanger on 11 7/8" DF beam	3.50"	Hanger ¹	1.75" / - 2	86	287	373	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Bracing Intervals	Comments
6' 10" o/c	
6' 10" o/c	
İ	6' 10" o/c

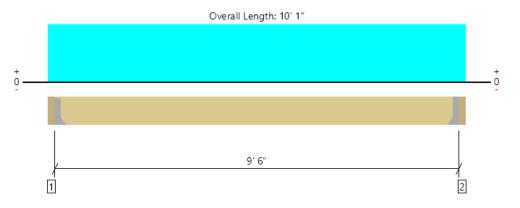
•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
2 - Face Mount Hanger	IUS1.81/11.88	2.00"	N/A	10-10dx1.5	2-Strong-Grip				

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 7' 1"	24"	12.0	40.0	Default Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Trevor Steelsmitt 07/05/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com		w

Floor Framing, Deck Floor Joists 1 piece(s) 2 x 10 DF No.2 @ 12" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	770 @ 3 1/2"	1406 (1.50")	Passed (55%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	645 @ 1' 3/4"	1915	Passed (34%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1828 @ 5' 1/2"	2334	Passed (78%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.174 @ 5' 1/2"	0.237	Passed (L/656)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.188 @ 5' 1/2"	0.475	Passed (L/608)		1.0 D + 1.0 S (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

· Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Hanger on 9 1/4" DF beam	3.50"	Hanger ¹	1.50"	61	756	817	See note 1
2 - Hanger on 9 1/4" DF beam	3.50"	Hanger ¹	1.50"	61	756	817	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Bracing Intervals	Comments
5' 9" o/c	
9' 6" o/c	
	5' 9" o/c

•Maximum allowable bracing intervals based on applied load.

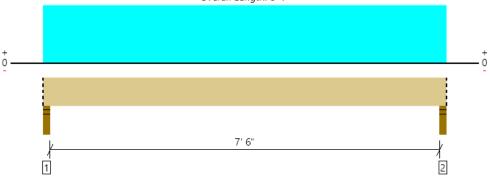
Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LU28	1.50"	N/A	8-10dx1.5	6-10dx1.5	
2 - Face Mount Hanger	LU28	1.50"	N/A	8-10dx1.5	6-10dx1.5	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 10' 1"	12"	12.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


Weyerhaeuser

ForteWEB Software Operator	Job Notes
Trevor Steelsmitt07/05/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com	

Floor Framing, Worst Case Deck Beam 1 piece(s) 6 x 10 DF No.2

Overall Length: 8' 1"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3327 @ 2"	12031 (3.50")	Passed (28%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2435 @ 1' 1"	6810	Passed (36%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	6181 @ 4' 1/2"	6937	Passed (89%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.119 @ 4' 1/2"	0.194	Passed (L/780)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.131 @ 4' 1/2"	0.387	Passed (L/711)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.

• Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.50"	296	3031	3327	Blocking
2 - Stud wall - DF	3.50"	3.50"	1.50"	296	3031	3327	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

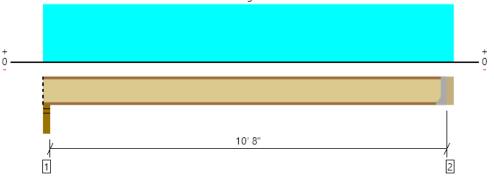
Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	8' 1" o/c					
Bottom Edge (Lu)	8' 1" o/c					
Navimum allowable bracing intervals based on applied load						

Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 1"	N/A	13.2		
1 - Uniform (PSF)	0 to 8' 1" (Front)	5'	12.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Trevor Steelsmith07/05/23	
Snake River Engineering (208) 453-6512	
trevor@snakeriverengineering.com	

Floor Framing, Main Floor Framing 1 piece(s) 9 1/2" TJI ® 110 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	559 @ 10' 11 1/2"	910 (1.75")	Passed (61%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	559 @ 10' 11 1/2"	1220	Passed (46%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1502 @ 5' 7"	2500	Passed (60%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.139 @ 5' 7"	0.269	Passed (L/930)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.180 @ 5' 7"	0.538	Passed (L/715)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	41	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.75"	134	447	581	Blocking
2 - Hanger on 9 1/2" DF beam	3.50"	Hanger ¹	1.75" / - 2	136	453	589	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Bracing Intervals	Comments
4' o/c	
11' o/c	
	4' o/c

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

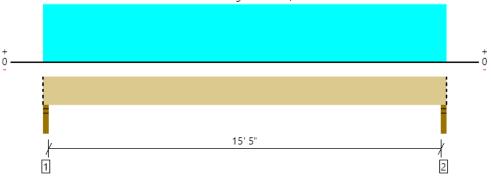
•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	IUS1.81/9.5	2.00"	N/A	8-10dx1.5	2-Strong-Grip	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 11' 3"	24"	12.0	40.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Trevor Steelsmitt 07/05/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com		w

Deck Framing Update 7.5.2023, Roof: Drop Beam 1 piece(s) 6 3/4" x 13 1/2" 24F-V4 DF Glulam

Overall Length: 15' 10 1/2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

r					
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	9455 @ 1 1/4"	11602 (2.75")	Passed (81%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	7842 @ 1' 4 1/4"	18514	Passed (42%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	36545 @ 7' 11 1/4"	46687	Passed (78%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.571 @ 7' 11 1/4"	0.783	Passed (L/329)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.648 @ 7' 11 1/4"	1.044	Passed (L/290)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

PASSED

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 0.99 that was calculated using length L = 15' 8".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	2.75"	2.75"	2.24"	1120	8334	9455	Blocking
2 - Stud wall - DF	2.75"	2.75"	2.24"	1120	8334	9455	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	15' 11" o/c				
Bottom Edge (Lu)	15' 11" o/c				
•Maximum allowable bracing intervals based on applied load.					

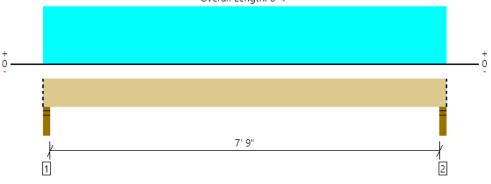
um allowable bracing intervals based on applied load

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 15' 10 1/2"	N/A	22.1		
1 - Uniform (PSF)	0 to 15' 10 1/2" (Front)	7'	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Trevor Steelsmith07/05/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com

Deck Framing Update 7.5.2023, floor beam 1 piece(s) 6 x 10 DF No.2

Overall Length: 8' 4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1868 @ 2"	12031 (3.50")	Passed (16%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1382 @ 1' 1"	6810	Passed (20%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	3586 @ 4' 2"	6937	Passed (52%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.068 @ 4' 2"	0.200	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.081 @ 4' 2"	0.400	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

· Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.

· Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.50"	305	1562	1868	Blocking
2 - Stud wall - DF	3.50"	3.50"	1.50"	305	1562	1868	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	8' 4" o/c				
Bottom Edge (Lu)	8' 4" o/c				
Maximum allowable bracing intervals based on applied load					

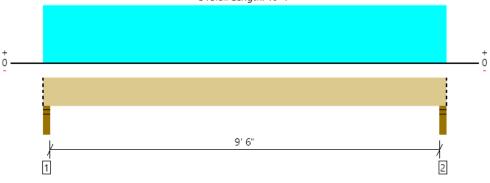
Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 4"	N/A	13.2		
1 - Uniform (PSF)	0 to 8' 4" (Front)	5'	12.0	75.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job N
Trevor Steelsmith 07/05/23	
Snake River Engineering	
(208) 453-6512	
trevor@snakeriverengineering.com	



Deck Framing Update 7.5.2023, Copy of floor beam 1 piece(s) 4 x 10 DF No.2

Overall Length: 10' 1"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	919 @ 2"	7656 (3.50")	Passed (12%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	725 @ 1' 3/4"	4468	Passed (16%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	2165 @ 5' 1/2"	5166	Passed (42%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.083 @ 5' 1/2"	0.244	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.100 @ 5' 1/2"	0.488	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.50"	162	756	919	Blocking
2 - Stud wall - DF	3.50"	3.50"	1.50"	162	756	919	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	10' 1" o/c	
Bottom Edge (Lu)	10' 1" o/c	

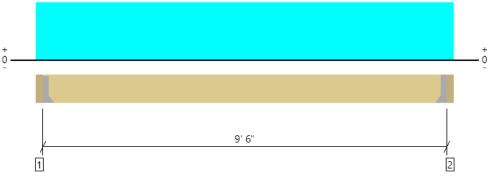
•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 10' 1"	N/A	8.2		
1 - Uniform (PSF)	0 to 10' 1" (Front)	2'	12.0	75.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job N
Trevor Steelsmitt07/05/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com	



Deck Framing Update 7.5.2023, Floor: Joist 1 piece(s) 2 x 10 DF No.2 @ 12" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	413 @ 3 1/2"	1406 (1.50")	Passed (29%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	346 @ 1' 3/4"	1915	Passed (18%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	981 @ 5' 1/2"	2334	Passed (42%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.087 @ 5' 1/2"	0.237	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.101 @ 5' 1/2"	0.475	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Hanger on 9 1/4" DF beam	3.50"	Hanger ¹	1.50"	61	378	439	See note 1
2 - Hanger on 9 1/4" DF beam	3.50"	Hanger ¹	1.50"	61	378	439	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Bracing Intervals	Comments
9' 6" o/c	
9' 6" o/c	
	9' 6" o/c

•Maximum allowable bracing intervals based on applied load.

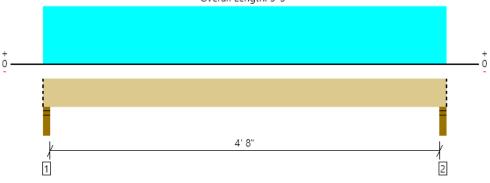
Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	LU28	1.50"	N/A	8-10dx1.5	6-10dx1.5		
2 - Face Mount Hanger	LU28	1.50"	N/A	8-10dx1.5	6-10dx1.5		

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 10' 1"	12"	12.0	75.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Trevor Steelsmitt 07/05/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com	

Deck Framing Update 7.5.2023, Copy of floor beam 1 piece(s) 6 x 8 DF No.2

Overall Length: 5' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1398 @ 2"	12031 (3.50")	Passed (12%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	910 @ 11"	5376	Passed (17%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1609 @ 2' 7 1/2"	3706	Passed (43%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.024 @ 2' 7 1/2"	0.123	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.028 @ 2' 7 1/2"	0.246	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.50"	216	1181	1398	Blocking
2 - Stud wall - DF	3.50"	3.50"	1.50"	216	1181	1398	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 3" o/c	
Bottom Edge (Lu)	5' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 3"	N/A	10.4		
1 - Uniform (PSF)	0 to 5' 3" (Front)	6'	12.0	75.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Trevor Steelsmith 07/05/23	
Snake River Engineering	
(208) 453-6512	
trevor@snakeriverengineering.com	

WOOD HEADER ALLOWABLE LOADS (kips/ft)

Load Duration Factor: 1.15 LVL Grade: 2.0E Top Chord Bracing:2'-0" O.C.Max TL Deflection:L/240, 0.75inRepetitive Stress Increase:No

					H	eader S	pan				
Header Type	2'	3'	4'	5'	6'	8'	10'	12'	14'	16'	18'
(2) 2x4 DF Stud	1.15	0.69	0.29	0.22	0.12	NA	NA	NA	NA	NA	NA
(3) 2x4 DF Stud	1.84	1.04	0.46	0.35	0.18	NA	NA	NA	NA	NA	NA
(2) 2x6 DF #2	3.34	1.44	0.83	0.48	0.36	0.20	0.12	NA	NA	NA	NA
(3) 2x6 DF #2	5.06	2.19	1.27	0.72	0.55	0.30	0.18	0.13	NA	NA	NA
(2) 2x8 DF #2	5.41	2.30	1.27	0.80	0.59	0.32	0.20	0.14	0.09	NA	NA
(3) 2x8 DF #2	8.74	3.39	2.19	1.18	0.97	0.53	0.33	0.23	0.16	0.12	NA
(2) 2x10 DF #2	8.05	3.39	1.96	1.18	0.89	0.48	0.31	0.21	0.15	0.10	NA
(3) 2x10 DF #2	13.23	5.18	3.22	1.80	1.38	0.82	0.52	0.36	0.25	0.20	0.15
(2) 2x12 DF #2	10.81	4.83	2.65	1.60	1.15	0.67	0.41	0.29	0.21	0.15	0.12
(3) 2x12 DF #2	17.94	7.02	4.49	2.40	1.96	1.10	0.70	0.48	0.35	0.26	0.21
(2) 1-3/4x7-1/4 LVL	13.80	6.79	3.80	2.40	1.61	0.94	0.52	0.30	0.18	0.12	NA
(3) 1-3/4x7-1/4 LVL	20.70	10.47	5.64	3.50	2.53	1.38	0.79	0.45	0.28	0.17	NA
(2) 1-3/4x9-1/2 LVL	24.73	10.47	5.64	3.75	2.65	1.50	0.92	0.63	0.39	0.24	0.15
(3) 1-3/4x9-1/2 LVL	37.15	17.25	8.51	6.00	4.03	2.30	1.38	0.95	0.60	0.37	0.22
(2) 1-3/4x11-7/8 LVL	40.71	17.25	8.86	6.00	4.49	2.53	1.61	1.12	0.82	0.53	0.32
(3) 1-3/4x11-7/8 LVL	61.30	24.15	13.23	8.75	6.67	3.80	2.42	1.61	1.15	0.79	0.48
(2) 1-3/4x14 LVL	56.47	24.15	12.54	8.00	5.75	3.45	2.19	1.50	1.13	0.86	0.54
(3) 1-3/4x14 LVL	85.10	28.75	18.86	12.00	8.63	5.29	3.34	2.30	1.61	1.27	0.81

Í	Additional Drift	Roof	Floor	Deck	Wall	Total Load		
T (L						Total Load	Total	Load
Trib _.	0.0	21	7	0	3.33			- 10
Dead Load	-	357.0	84.0	0.0	40.0	481.0 plf	3,911	.0 plf
Live / Snow Load	0	3150.0	280.0	0.0	-	3,430.0 plf		
scription:	3.0 ft Opening	9.5 ft Opening	2.3 ft Opening					
ſ	(*)* * (*)		(1)					
Header Callout	(2)9-1/2" LVL 2.0E	5.25x18 DF/DF 24F - V4	(2)2x12 DF-L No. 2					
	(2) 2x6	(4) 2x6	(2) 2x6					
Trimmers	DF-L No. 2	DF-L No. 2	DF-L No. 2					
King Studs	(1) 2x6 DF-L No. 2	(1) 2x6 DF-L No. 2	(1) 2x6 DF-L No. 2					
ood Design								
Species	LVL 2.05	DF/DF	DF-L			1		
Grade Width	2.0E 3.50 in	24F - V4 5.25 in	No. 2 3.00 in		+	+ +		
Depth	9.50 in	18.00 in	11.25 in			1 1		
action								
Dead Load	721 lbs	2,285 lbs	541 lbs					
Live Load	5,145 lbs	16,293 lbs	3,859 lbs		<u> </u>	I		
ad								
lu	3.0 ft	9.5 ft	2.3 ft					
le	6.2 ft	19.6 ft	4.6 ft			<u> </u>		
ljustment Factors								
Cd	1.15	1.15	1.15					
CF	1.1	1	1					
aterial Properties					1	1 1		
Fb Fv	2,900 psi 285 psi	2,400 psi 265 psi	900 psi 180 psi					
E	2,000,000 psi	1,850,000 psi	1,600,000 psi					
Emin	1,016,535 psi	950,000 psi	580,000 psi					
laulated Due a								
Ilculated Prop. A	33.25 in^2	94.50 in^2	33.75 in^2					
I	250.07 in^4	2,551.50 in^4	355.96 in^4					
S	52.65 in^3	283.50 in^3	63.28 in^3					
RB Emin'	7.58 1,016,535 psi	12.38 950,000 psi	8.34 580,000 psi			+		
FbE	21,210 psi	7,433 psi	10,011 psi		1	1 1		
Fb*	3,669 psi	2,760 psi	1,035 psi					
CL	1	1	1			<u> </u>		
ear and Moment					1	1		
M V	52,798 lb-in	529,446 lb-in	29,699 lb-in			<u> </u>		
v[5,866 lbs	18,577 lbs	4,400 lbs		I	<u> </u>		
ress th	4.002	1.052	460		1			
fb Fb'	1,003 psi 3,631 psi	1,868 psi 2,684 psi	469 psi 1,029 psi		+	+ +		
fb/Fb'	0.28	0.70	0.46					
fv	265 psi	295 psi	196 psi					
Fv' fv/Fv'	328 psi 0.81	305 psi 0.97	207 psi 0.94		+	+ +		
Max Ratio	0.81	0.97	0.94		1	1 1		
	Pass	Pass	Pass					
flection								
Δτι	0.01 in	0.15 in	0.00 in					
Διι	L/2,526	L/751	L/6,818			┨────┤		
Διι	0.01 in L/2,880	0.13 in L/856	0.00 in L/7,775			+		
	L/2.880	L/030	L//.//5					

Beam Calculations	Beam	Calculations
-------------------	------	--------------

ĺ	Additional Drift	Roof	Floor	Deck	Wall	Total Load		
Trib	0.0	7	0	0	3.33	. Clai Loud	Tota	Load
1115	0.0	/	0	0	5.55		1.20	0 - 16
Dead Load	-	119.0	0.0	0.0	40.0	159.0 plf	1,205	9.0 plf
Live / Snow Load	0	1050.0	0.0	0.0	-	1,050.0 plf		
		1	r		T			n
Description:	4.0 ft Opening	8.0 ft Opening	7.0 ft Opening					
Г	(2)2,49	(2)0 1/2"	(2)0 1/2"					
Header Callout	(2)2x8 DF-L No. 2	(2)9-1/2" LVL 2.0E	(2)9-1/2" LVL 2.0E					
Trimmers	(1) 2x6	(2) 2x6	(2) 2x6					
	DF-L No. 2	DF-L No. 2	DF-L No. 2	-				
King Studs	(1) 2x6 DF-L No. 2	(1) 2x6 DF-L No. 2	(1) 2x6 DF-L No. 2					
-								
Wood Design Species	DF-L	LVL	LVL					
Grade	No. 2	2.0E	2.0E					
Width	3.00 in	3.50 in	3.50 in					
Depth	7.25 in	9.50 in	9.50 in		L	1		
Reaction						1		-
Dead Load Live Load	318 lbs 2,100 lbs	636 lbs 4,200 lbs	556 lbs 3,675 lbs					
Live Load	2,100 105	4,200 IDS	3,073 105		ł	4	<u> </u>	ļ
Load								
lu	4.0 ft	8.0 ft	7.0 ft					
le	8.2 ft	15.4 ft	13.8 ft					
Adjustment Factors								
Cd	1.15	1.15	1.15		ſ			
CF	1.2	1.1	1.1					
Material Properties								
Fb	900 psi	2,900 psi	2,900 psi					
Fv	180 psi	285 psi	285 psi					
E	1,600,000 psi	2,000,000 psi	2,000,000 psi					
Emin	580,000 psi	1,016,535 psi	1,016,535 psi					
Calculated Prop.	21 75 in 42	33.25 in^2	22.25 in 62					
A	21.75 in^2 95.27 in^4	250.07 in^4	33.25 in^2 250.07 in^4					
s	26.28 in^3	52.65 in^3	52.65 in^3					
RB	8.92	11.98	11.33					
Emin'	580,000 psi	1,016,535 psi	1,016,535 psi					
FbE	8,738 psi	8,503 psi	9,509 psi					
Fb* CL	1,242 psi 1	3,669 psi 1	3,669 psi 1					
ι	1	1 <u> </u>	1		1	1	L	I
Shear and Moment		I			I			1
M	29,015 lb-in	116,060 lb-in	88,859 lb-in					
v	2,418 lbs	4,836 lbs	4,231 lbs		I		<u> </u>	I
Stress		1			T			ľ
fb Fb'	1,104 psi	2,205 psi	1,688 psi					
Fb' fb/Fb'	1,232 psi 0.90	3,542 psi 0.62	3,562 psi 0.47					
fv	167 psi	218 psi	191 psi					
Fv'	207 psi	328 psi	328 psi					
fv/Fv'	0.81	0.67	0.58					
Max Ratio	0.90	0.67	0.58					
	Pass	Pass	Pass					
Deflection					1	1		
Δτι	0.05 in	0.22 in	0.13 in					
Διι	L/1,051 0.04 in	L/431 0.19 in	L/643 0.11 in					
	L/1,210	L/496	L/741		1	1		

Beam Calculation	าร							
	Additional Drift	Roof	Floor	Deck	Wall	Total Load	Tota	Load
Trib	0.0	7	0	0	3.33			2000
Dead Load	-	119.0	0.0	0.0	40.0	159.0 plf	1,209	9.0 plf
Live / Snow Load	0	1050.0	0.0	0.0	-	1,050.0 plf		
				-				
Description:	9.5 ft Opening							
, I								
Header Callout	(2)11-7/8" LVL 2.0E							
Trimmers	(2) 2x6 DF-L No. 2							
King Studs	(1) 2x6 DF-L No. 2							
Wood Design								
Wood Design Species	LVL							
Grade	2.0E							
Width Depth	3.50 in 11.88 in							
	11.00			1		1	1	1
Reaction	755 16-							
Dead Load Live Load	755 lbs 4,988 lbs						+	
Live Load	4,500 105		<u>.</u>	+	<u>I</u>	Ļ	Į	Į
Load								
lu	9.5 ft							
le	18.5 ft							
Adjustment Factors Cd	1.15		T		T	I	I	
CF	1							
L						•		•
Material Properties Fb	2,900 psi		1					
FU	2,500 psi 285 psi							
E	2,000,000 psi							
Emin	1,016,535 psi							
Calculated Prop.							1	1
A	41.56 in^2							
1	488.41 in^4 82.26 in^3		-					
RB	14.65							
Emin'	1,016,535 psi		1			1	<u>t</u>	
FbE	5,683 psi							
Fb*	3,335 psi					<u> </u>		
CL	1		L	1	L	1	1	I
Shear and Moment								
М	163,663 lb-in							
v	5,743 lbs							
Stress								
fb	1,990 psi							
Fb'	3,141 psi							
fb/Fb'	0.63		l					
fv Fv'	207 psi 328 psi							
fv/Fv'	0.63		1	1	1			
Max Ratio	0.63							
]	Pass							
Deflection								
Δτι	0.23 in							
	L/503							
Διι	0.20 in							
	L/579							
	Pass							

Beam Calculation	ıs							
	Additional Drift	Roof	Floor	Deck	Wall	Total Load	Tota	Load
Trib	0.0	15.5	0	0	3.33			
Dead Load	-	263.5	0.0	0.0	40.0	303.5 plf	2,62	3.5 plf
Live / Snow Load	0	2325.0	0.0	0.0	-	2,325.0 plf		
				-	-			
Description:	9.5 ft Opening							
	F 25v12 F							
Header Callout	5.25x13.5 DF/DF 24F - V4							
Trimmers	(3) 2x6							
	DF-L No. 2 (1) 2x6				1			
King Studs	DF-L No. 2							
Wood Design								
Species	DF/DF							
Grade Width	24F - V4 5.25 in			-	-			
Depth	13.50 in							
				•	•	•		•
Reaction Dead Load	1,441 lbs							
Live Load	11,044 lbs		1				1	
Load								
lu	9.5 ft				T			
le	18.9 ft							
Adjustment Factors Cd	1.15							
CF	1.15							
						•		•
Material Properties Fb	2,400 psi							
Fv	265 psi							
E	1,850,000 psi							
Emin	950,000 psi							
Calculated Prop.								
A	70.88 in^2							
1	1,076.41 in^4							
S	159.47 in^3			-	-			
RB Emin'	10.53 950,000 psi							
FbE	10,284 psi							
Fb*	2,760 psi							
CL	1		1				1	
Shear and Moment								
М								
v	12,485 lbs							
Stress								
fb	2,231 psi							
Fb' fb/Fb'	2,711 psi 0.82							
fv	264 psi							
Fv'	305 psi							
fv/Fv'	0.87		l				l	ļ
Max Ratio	0.87 Pass							
L	1 033							
Deflection Δτι	0.24 in							
	L/471							
Διι	0.21 in							
	L/533							
	Pass							

Beam Calculation	ns							
	Additional Drift	Roof	Floor	Deck	Wall	Total Load	Tota	Load
Trib	0.0	12.165	0	0	3.33			
Dead Load	-	206.8	0.0	0.0	40.0	246.8 plf	2,07	5 plf
Live / Snow Load	0	1824.8	0.0	0.0	-	1,824.8 plf		
	-		1		1		•	
Description:	3.0 ft Opening							
T	(2)2+10							
Header Callout	(2)2x10 DF-L No. 2							
Trimmers	(2) 2x6							
	DF-L No. 2 (1) 2x6							
King Studs	DF-L No. 2							
Wood Design								
Species	DF-L							
Grade	No. 2			+		+		
Width Depth	3.00 in 9.25 in			1			+	
	///			•		•		
Reaction Dead Load	370 lbs							
Live Load	2,737 lbs			1		1		
Logd								
Load Iu	3.0 ft							
le	6.2 ft							
Adjustment Factors Cd	1.15		1	1	1	1	1	
CF	1.15							
-			-	•	•	•		
Material Properties Fb	900 psi							
Fv	180 psi							
E	1,600,000 psi							
Emin	580,000 psi							
Calculated Prop.								
A	27.75 in^2							
1	197.86 in^4				1			
S RB	42.78 in^3 8.73							
Emin'	580,000 psi							
FbE	9,131 psi					l		
Fb* CL	1,139 psi 1		+	1	1	+	+	Ļ
					•			
Shear and Moment M	27 OCE IL :							
V	27,965 lb-in 3,107 lbs			1	1	1		
Letterer								
Stress fb	654 psi							
Fb'	1,131 psi							
fb/Fb'	0.58			l		l		
fv Fv'	168 psi 207 psi			1				
fv/Fv'	0.81							
Max Ratio	0.81							
	Pass							
Deflection Δτι	0.01 in							
Δτι	0.01 in L/3,019			1				
Διι	0.01 in			<u> </u>		<u> </u>		
ļ	L/3,427							
l	Pass							

Beam Calculation	ıs							
	Additional Drift	Roof	Floor	Deck	Wall	Total Load	Tota	Load
Trib	0.0	11.5	0	0	3.33			
Dead Load	-	195.5	0.0	0.0	40.0	235.5 plf	1,960	0.5 plf
Live / Snow Load	0	1725.0	0.0	0.0	-	1,725.0 plf		
					-			
Description:	3.0 ft Opening							
Г	(2)248							
Header Callout	(2)2x8 DF-L No. 2							
Trimmers	(2) 2x6							
	DF-L No. 2 (1) 2x6							
King Studs	DF-L No. 2							
Wood Design								
Species	DF-L							
Grade	No. 2							
Width Depth	3.00 in 7.25 in			1				
			•	•	•	•	•	•
<i>Reaction</i> Dead Load	353 lbs							
Live Load	2,588 lbs			1				
Logd								
Load Iu	3.0 ft							
le	6.2 ft							
Adjustment Factors Cd	1.15			1	1			
CF	1.15							
-					•	•		•
Material Properties Fb	900 psi							
Fv	180 psi							
E	1,600,000 psi							
Emin	580,000 psi							
Calculated Prop.								
A	21.75 in^2							
1	95.27 in^4 26.28 in^3							
S RB	7.73							
Emin'	580,000 psi							
FbE	11,650 psi							
Fb* CL	1,242 psi 1			1				
			L		•	L		
Shear and Moment	26 466 lb :							
V	26,466 lb-in 2,941 lbs		1	1	1	1	1	
L.								
Stress fb	1,007 psi							
Fb'	1,235 psi							
fb/Fb'	0.82		l	l		l	l	
fv Fv'	203 psi 207 psi			1				
fv/Fv'	0.98							
Max Ratio	0.98							
	Pass							
Deflection	0.02 %			1				
Δτι	0.02 in L/1,536			<u> </u>				
Διι	0.02 in	<u></u> _	<u> </u>	<u> </u>				
	L/1,746							
	Pass							

	Additional Drift	Roof	Floor	Deck	Wall	Total Load	Tata	Load
Trib	0.0	3	0	0	3.33		lota	LOad
1115	0.0	5		0	5.55			- 10
Dead Load	-	51.0	0.0	0.0	40.0	91.0 plf	541.	0 plf
Live / Snow Load	0	450.0	0.0	0.0	-	450.0 plf		
	12.05.0							
Description:	12.0 ft Opening	3.0 ft Opening						
-								
Header Callout	(2)11-7/8"	(2)2x6						
	LVL 2.0E	DF-L No. 2						
Trimmers	(1) 2x6	(1) 2x6						
	DF-L No. 2	DF-L No. 2						
King Studs	(2) 2x6	(1) 2x6						
ining of a do	DF-L No. 2	DF-L No. 2						
Weed Destant								
Wood Design Species	LVL	DF-L						
Grade	2.0E	No. 2						
Width	3.50 in	3.00 in		1	1	1	1	1
Depth	11.88 in	5.50 in	1	1	1	1	1	1
				•	-	•		•
Reaction				1				
Dead Load	546 lbs	136 lbs				1	1	
Live Load	2,700 lbs	675 lbs	<u> </u>	1		I	ļ	ļ
oad			1	1				1
lu	12.0 ft	3.0 ft						
le	22.5 ft	6.2 ft						
Adjustment Factors								
Cd	1.15	1.15						
CF	1	1.3						
Material Properties	2 000	000			1	1	1	1
Fb	2,900 psi	900 psi						
Fv	285 psi	180 psi						
E	2,000,000 psi	1,600,000 psi						
Emin	1,016,535 psi	580,000 psi						
_								
-								
Calculated Prop.					1	1	1	1
Calculated Prop.	41.56 in^2	16.50 in^2						
A I	488.41 in^4	41.59 in^4						
A I S	488.41 in^4 82.26 in^3	41.59 in^4 15.13 in^3						
A I S RB	488.41 in^4 82.26 in^3 16.19	41.59 in^4 15.13 in^3 6.73						
A I S RB Emin'	488.41 in^4 82.26 in^3 16.19 1,016,535 psi	41.59 in^4 15.13 in^3 6.73 580,000 psi						
A I S RB Emin' FbE	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi	41.59 in^4 15.13 in^3 6.73 580,000 psi 15,357 psi						
A I S Emin' FbE Fb*	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi 3,335 psi	41.59 in^4 15.13 in^3 6.73 580,000 psi 15,357 psi 1,346 psi						
A I S RB Emin' FbE	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi	41.59 in^4 15.13 in^3 6.73 580,000 psi 15,357 psi						
A I S RB Emin' FbE FbE CL	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi 3,335 psi	41.59 in^4 15.13 in^3 6.73 580,000 psi 15,357 psi 1,346 psi						
A I S RB Emin' FbE FbE CL	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi 3,335 psi 1	41.59 in^4 15.13 in^3 6.73 580,000 psi 15,357 psi 1,346 psi 1						
A I S RB Emin' FbE Fb* CL Shear and Moment	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi 3,335 psi	41.59 in^4 15.13 in^3 6.73 580,000 psi 15,357 psi 1,346 psi						
A I S RB Emin' FbE Fb* CL ihear and Moment	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi 3,335 psi 1 116,847 lb-in	41.59 in^4 15.13 in^3 6.73 580,000 psi 15,357 psi 1,346 psi 1 7,303 lb-in						
A I S RB Emin' FbE Fb [*] CL ihear and Moment M V	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi 3,335 psi 1 116,847 lb-in 3,246 lbs	41.59 in^4 15.13 in^3 6.73 580,000 psi 15,357 psi 1,346 psi 1 7,303 lb-in 811 lbs						
A I S RB Emin' FbE Fb* CL ihear and Moment V Stress	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi 3,335 psi 1 116,847 lb-in 3,246 lbs 1,420 psi	41.59 in^4 15.13 in^3 6.73 580,000 psi 15,357 psi 1,346 psi 1 7,303 lb-in 811 lbs 483 psi						
A I S RB Emin' FbE Fb* CL thear and Moment V tress fb Fb'	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi 3,335 psi 1 116,847 lb-in 3,246 lbs 1,420 psi 3,046 psi	41.59 in^4 15.13 in^3 6.73 580,000 psi 15,357 psi 1,346 psi 1 7,303 lb-in 811 lbs 483 psi 1,339 psi						
A I S RB Emin' FbE Fb* CL <i>hear and Moment</i> V tress	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi 1 1 116,847 lb-in 3,246 lbs 1,420 psi 3,046 psi 0.47	41.59 in^4 15.13 in^3 6.73 580,000 psi 15,357 psi 1,346 psi 1 7,303 lb-in 811 lbs 483 psi 1,339 psi 0.36						
A I S RB Emin' FDE FD* CL ihear and Moment M V stress fb Fb' Fb' Fb' Fb' fb/Fb' fv/Fb'	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi 3,335 psi 1 116,847 lb-in 3,246 lbs 1,420 psi 3,046 psi 0.47 117 psi	41.59 in^4 15.13 in^3 6.73 580,000 psi 1,346 psi 1 7,303 lb-in 811 lbs 483 psi 1,339 psi 0.36 74 psi						
A I S RB Emin' FbE Fb* CL ihear and Moment M V : tress fb Fb' fb/Fb' fb/Fb' fv Fv' Fv'	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi 3,335 psi 1 116,847 lb-in 3,246 lbs 1,420 psi 3,046 psi 0.47 117 psi 328 psi	41.59 in^4 15.13 in^3 6.73 580,000 psi 15,357 psi 1,346 psi 1 7,303 lb-in 811 lbs 483 psi 1,339 psi 0.36 74 psi 207 psi						
A I S RB Emin' FbE Fb* CL ihear and Moment M V Stress fb Fb' fb/Fb' fv Fv' fv/Fv' fv/Fv'	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi 1 1 116,847 lb-in 3,246 lbs 1,420 psi 3,046 psi 0.47 117 psi 328 psi 0.36	41.59 in^4 15.13 in^3 6.73 580,000 psi 15,357 psi 1,346 psi 1 7,303 lb-in 811 lbs 483 psi 1,339 psi 0.36 74 psi 207 psi 0.36						
A I S RB Emin' FbE Fb* CL ihear and Moment M V : tress fb Fb' fb/Fb' fb/Fb' fv Fv' Fv'	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi 1 1 116,847 lb-in 3,246 lbs 1,420 psi 3,046 psi 0.47 117 psi 328 psi 0.36 0.47	41.59 in^4 15.13 in^3 6.73 580,000 psi 15,357 psi 1,346 psi 1 7,303 lb-in 811 lbs 483 psi 1,339 psi 0.36 74 psi 207 psi 0.36 0.36						
A I S RB Emin' FbE Fb* CL ihear and Moment M V Stress fb Fb' fb/Fb' fv Fv' fv/Fv' fv/Fv'	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi 1 1 116,847 lb-in 3,246 lbs 1,420 psi 3,046 psi 0.47 117 psi 328 psi 0.36	41.59 in^4 15.13 in^3 6.73 580,000 psi 15,357 psi 1,346 psi 1 7,303 lb-in 811 lbs 483 psi 1,339 psi 0.36 74 psi 207 psi 0.36						
A I S RB Emin' FbE Fb* CL <i>hear and Moment</i> M V tress fb fb/Fb' fb/Fb' fb/Fb' fv/Fv' Max Ratio	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi 1 1 116,847 lb-in 3,246 lbs 1,420 psi 3,046 psi 0.47 117 psi 328 psi 0.36 0.47	41.59 in^4 15.13 in^3 6.73 580,000 psi 15,357 psi 1,346 psi 1 7,303 lb-in 811 lbs 483 psi 1,339 psi 0.36 74 psi 207 psi 0.36 0.36						
A I S RB Emin' FbE Fb* CL ihear and Moment M V Stress fb Fb' fb/Fb' fb/Fb' fb/Fb' fv/Fv' Max Ratio	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi 1 1 116,847 lb-in 3,246 lbs 1,420 psi 3,046 psi 0.47 117 psi 328 psi 0.36 0.47	41.59 in^4 15.13 in^3 6.73 580,000 psi 15,357 psi 1,346 psi 1 7,303 lb-in 811 lbs 483 psi 1,339 psi 0.36 74 psi 207 psi 0.36 0.36						
A I S RB Emin' FbE Fb* CL ihear and Moment M V Stress fb Fb' fb/Fb' fv Fv' fv/Fv' Max Ratio	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi 1 1 116,847 lb-in 3,246 lbs 1,420 psi 3,046 psi 0.47 117 psi 328 psi 0.36 0.47 Pass	41.59 in^4 15.13 in^3 6.73 580,000 psi 15,357 psi 1,346 psi 1 7,303 lb-in 811 lbs 483 psi 1,339 psi 0.36 74 psi 207 psi 0.36 0.36 0.36 Pass						
A I S RB Emin' FbE Fb* CL Shear and Moment M V Stress fb Fb' fb/Fb' fv Fv' fv/Fv' Max Ratio	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi 1 1 116,847 lb-in 3,246 lbs 1,420 psi 3,046 psi 0.47 117 psi 328 psi 0.36 0.47 Pass 0.26 in	41.59 in^4 15.13 in^3 6.73 580,000 psi 15,357 psi 1,346 psi 1 7,303 lb-in 811 lbs 483 psi 1,339 psi 0.36 74 psi 207 psi 0.36 0.36 Pass 0.01 in						
A I S RB Emin' FbE Fb* CL ihear and Moment M V Sitress fb Fb' fb/Fb' fb/Fb' fv/Fv' Max Ratio	488.41 in^4 82.26 in^3 16.19 1,016,535 psi 4,655 psi 1 1 116,847 lb-in 3,246 lbs 1,420 psi 3,046 psi 0.47 117 psi 328 psi 0.36 0.47 Pass 0.26 in L/557	41.59 in^4 15.13 in^3 6.73 580,000 psi 15,357 psi 1,346 psi 1 7,303 lb-in 811 lbs 483 psi 1,339 psi 0.36 74 psi 207 psi 0.36 0.36 Pass 0.36 Pass						

Additional trik food 1000 1000 0 0.00	Beam Calculation	าร							
The 0.0 1.595 0 0 3.33 Image: Constraint of the second of t		Additional Drift	Roof	Floor	Deck	Wall	Total Load	Tota	Load
Up / Serve tool 0 200 00 0 2002 300 Description: 3.0/1 Opening	Trib	0.0	15.995	0	0	3.33			2000
Uve / Sook lost 0 0.0 0.0 2,293,3 (II Description: 3.0 ft Opening III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Dead Load	-	271.9	0.0	0.0	40.0	311.9 plf	2,71	1.1 plf
Header Callost (312-3)							2,399.3 plf		
Header Callow Trionner Wind State Ditable Wind State Ditable Ditable </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Network Market Of 4, 46, 2 Image of 1, 46, 7 <	Description:	3.0 ft Opening							
Network Work Def 4, 8, 2 No No No Trinned 01, 36 0	, Г								
Immersion DF-L No. 2 DF-L No. 2 DF-L No. 2 DF-L No. 2 Wood Design DF-L No. 2	Header Callout	DF-L No. 2							
Wind Sted D1/2.0 DV DV DV Species D7-1	Trimmers								
Wead Design Units Diric Diric <thdiric< th=""> <thdiric< th=""> Diric</thdiric<></thdiric<>	King Stude								
Species 0-1 0 0 Wdth 4.50 m 0 0 0 Beat load 468 Bb 0 0 0 0 Beat load 468 Bb 0 0 0 0 0 Cord 0<	King Studs	DF-L No. 2							
Grade No. 2 Image: Constraint of the second									
Width 4.50 m m <thm< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thm<>									
Depth 7.2's in Image: constraint of the section of the	E CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR			1		1	1	1	
Dead Load 468 lbs						1			<u> </u>
Dead Load 468 lbs <th< th=""></th<>	Reaction								
Live Load 3.593 lbs Image: constraint of the second secon		468 lbs							
b 3.0 ft Image: Constraint of the second se						1			
b 3.0 ft Image: Constraint of the second se	t - v d								
le 6.2 ft Image: constraint of the second s		30#		1					
Adjustment Factors CG 1.15 Image: Constraint of the second se									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L				•				
Gr 1.2 <				1			•	1	n
Atterial Properties Fb 900 psi Image: constraint of the second secon									
Fb 900.psi Image: state sta	Cr	1.2							
Fv 180 psi Image: Control of the second sec						1			1
E 1,600,000 psi Image: Second secon	E CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR								
Emin 580,000 psi Image: constraint of the second s									
Second Moment M 32,63 in/2 I I I Second Moment Second Moment Second Moment Second Moment Second Moment Stess Second Moment Second Moment Second Moment Second Moment Fib 928 psi Second Moment Second Moment Second Moment Stess Second Moment Second Moment Second Moment Second Moment Stess Second Moment Second Moment Second Moment Second Moment Stess Second Moment Second Moment Second Moment Second Moment Stess Second Moment Second Moment Second Moment Second Moment Stess Second Moment Second Moment Second Moment Second Moment M 36,600 Ib-in Second Moment Second Moment Second Moment M 36,600 Ib-in Second Moment Second Moment Second Moment M 36,600 Ib-in Second Moment Second Moment Second Moment Fib 928 psi Second Mome	F								
A 32.63 ln ² 2						•			•
$\begin{tabular}{ c c c c c } \hline 142.90 in^4 & & & & & & & & & & & & & & & & & & &$				T				T	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A								
RB 5.15 Image: constraint of the second se	s								
FbE 26,214 psi Image: constraint of the state of the	RB								
Fb* 1,242 psi Image: model in the image: model i	E CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR								
CL 1 Image: constraint of the state of									
Shear and Moment M 36,600 lb-in Image: Second state									
M 36,600 lb-in Image: Model of the state of the sta						•		•	•
V 4,067 lbs Image: constraint of the state of the s		26 600 lb :		1		1		-	
Stress fb 928 psi						<u> </u>			
fb 928 psi <th< th=""> <t< td=""><td>L</td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>•</td><td>•</td></t<></th<>	L					•		•	•
Fb' 1,239 psi Image: constraint of the state of the	Stress	928 25		1		1			
fb/Fb' 0.75 <th< th=""> <</th<>		1,239 psi				1			
Fv' 207 psi Image: Constraint of the state of the s	fb/Fb'	0.75				L			
fv/Fv' 0.90 <th< th=""> <</th<>		187 psi							
Max Ratio 0.90 Image: Constraint of the second se		207 psi		+		1		+	
Pass Contraction Δπ 0.02 in Image: Contraction Image: Contraction <th< td=""><td></td><td></td><td></td><td>1</td><td>1</td><td>1</td><td></td><td>1</td><td></td></th<>				1	1	1		1	
Δπ. 0.02 in L/1,666						Ì			
Δπ. 0.02 in L/1,666	Deflection								
L/1,666									
Aut 0.02 is		L/1,666							
	Διι	0.02 in		_				<u></u>	<u>_</u>
L/1,882 Pass									

WOOD TALL WALL & KING STUD ALLOWABLE LOADS (plf):

	uration Factor: 1ax Vert. Load:		N	lax Deflection:	L/180		
				Height			
King Stud	12'	14'	16'	18'	20'	22'	24'
(1) 2x4 Stud	12.8	NA	NA	NA	NA	NA	NA
(2) 2x4 Stud	25.6	NA	NA	NA	NA	NA	NA
(3) 2x4 Stud	38.4	NA	NA	NA	NA	NA	NA
(1) 2x6 DF #2	57.0	35.8	24.1	16.9	NA	NA	NA
(2) 2x6 DF #2	114.0	71.6	48.2	33.8	NA	NA	NA
(3) 2x6 DF #2	171.0	107.4	72.3	50.7	NA	NA	NA
(1) 2x8 DF #2	130.0	81.7	55.0	38.7	28.2	21.2	16.3
(2) 2x8 DF #2	260.0	163.4	110.0	77.4	56.4	42.4	32.6
(3) 2x8 DF #2	390.0	245.1	165.0	116.1	84.6	63.6	48.9
(1) 2x6 LSL	67.8	42.7	28.5	20.0	14.7	NA	NA
(2) 2x6 LSL	135.6	85.4	57.0	40.0	29.4	NA	NA
(3) 2x6 LSL	203.4	128.1	85.5	60.0	44.1	NA	NA
(1) 2x8 LSL	155.0	98.3	65.5	46.0	33.5	25.2	19.5
(2) 2x8 LSL	310.0	196.6	131.0	92.0	67.0	50.4	39.0
(3) 2x8 LSL	465.0	294.9	196.5	138.0	100.5	75.6	58.5

*NOTE 1: this table combined with trimmer table to determine combined stress on each common wall stud. *NOTE 2: allowable loads are interpolated at heights not in 2' increments.

WOOD TRIMMER ALLOWABLE LOADS (kips):

Load Duration Factor: 1.0 Eccentricity: 0" Weak Axis Braced: Y

	Height									
Trimmer Type	8'	10'	12'	14'	16'	18'	20'			
(1) 2x4 Stud	2.4	1.7	1.2	NA	NA	NA	NA			
(2) 2x4 Stud	4.9	3.4	2.4	NA	NA	NA	NA			
(3) 2x4 Stud	7.1	5.0	3.6	NA	NA	NA	NA			
(1) 2x6 DF #2	5.1	5.1	5.0	3.8	3.0	NA	NA			
(2) 2x6 DF #2	10.3	10.3	10.1	7.7	6.0	NA	NA			
(3) 2x6 DF #2	15.4	15.4	15.1	11.6	9.1	NA	NA			
(1) 2x8 DF #2	6.7	6.7	6.7	6.7	6.4	5.3	4.4			
(2) 2x8 DF #2	13.5	13.5	13.5	13.5	12.9	10.6	8.8			
(3) 2x8 DF #2	20.3	20.3	20.3	20.3	19.4	15.9	13.2			

*NOTE 1: this table combined with king stud table to determine combined stress on each common wall stud. *NOTE 2: allowable loads are interpolated at heights not in 2' increments.

		TALL WALL (CALCULATIONS	:		
	This sprea	adsheet is used for desig	gning a stud wall accord	ing to the NDS.		
Г						
Description:	9' Tall Wall	9' Tall Wall	10.5' Tall Wall	King Stud (12' Max Opening)	King Stud (9.5' Max Opening)	
Type:	2x Lumber (2"-4")	2x Lumber (2"-4")	2x Lumber (2"-4")	2x Lumber (2"-4")	2x Lumber (2"-4")	
Species:	DF-L	DF-L	DF-L	DF-L	DF-L	
Grade:	No. 2	No. 2	No. 2	No. 2	No. 2	
Nominal width, t =	(1) 2	(1) 2	(1) 2	(2) 2	(1) 2	
Actual width =	1.50 in	1.50 in	1.50 in	3.00 in	1.50 in	
Nominal depth, d =	6	6	6	6	6	
Actual depth = Span, L =	5.50 in 9.000 ft	5.50 in 9.000 ft	5.50 in 10.500 ft	5.50 in 10.500 ft	5.50 in 9.000 ft	
w/o Plates	8.750 ft	8.750 ft	10.250 ft	10.250 ft	8.750 ft	
Stud spacing, s =	12 in	16 in	16 in	82 in	67 in	
Lat. Pressure, w _{wind} =	14.58 psf	14.58 psf	14.58 psf	14.58 psf	14.58 psf	
Axial load, P =	4168 lbs	5335 lbs	2783 lbs	50 lbs	50 lbs	
Eccentricity, e =	0 in	0 in	0 in	0 in	0 in	
K _{cE} =	0.3	0.3	0.3	0.3	0.3	
c = w =	0.8 14.6 plf	0.8 19.4 plf	0.8 19.4 plf	0.8 99.9 plf	0.8 81.7 plf	
•• -L	pn	p	60	pii	pn	
Fb	900 psi	900 psi	900 psi	900 psi	900 psi	
Fv Fa mall	180 psi	180 psi	180 psi	180 psi	180 psi	
Fc-prll Ec-perp	1,350 psi	1,350 psi	1,350 psi	1,350 psi	1,350 psi	
Fc-perp C _d	625 psi 1.60	625 psi 1.60	625 psi 1.60	625 psi 1.60	625 psi 1.60	
	1.30	1.30	1.30	1.30	1.30	
C _{F,Fb}						
C _{F,Fcprll}	1.10	1.10	1.10	1.10	1.10	
С,	1.15	1.15	1.15	1.00	1.00	
C _p	0.47	0.47	0.36	0.36	0.47	
С _н С _ь	1.00	1.00 1.07	1.00 1.07	1.00 1.07	1.00 1.07	
E	1,600,000 psi	1,600,000 psi	1,600,000 psi	1,600,000 psi	1,600,000 psi	
Emin	580,000 psi	580,000 psi	580,000 psi	580,000 psi	580,000 psi	
Allowable Stress:	•	•		•		
$F'_b = F_b C_d C_F C_r =$	2153 psi	2153 psi	2153 psi	1872 psi	1872 psi	
$F'_v = F'_v C_d C_H =$	288 psi	288 psi	288 psi	288 psi	288 psi	
$F_c^* = F_c C_d C_F =$	2376 psi	2376 psi	2376 psi	2376 psi	2376 psi	
$F_{cE} = (K_{cE} E')/(l_e/d)2 =$	1317 psi	1317 psi	960 psi	960 psi	1317 psi	
$F'_c = F_c C_d C_F C_p =$	1118 psi	1118 psi	862 psi	862 psi	1118 psi	
$F'_{c perp} = F_{c perp} Cb =$	668 psi	668 psi	668 psi	668 psi	668 psi	
E' = E =	1600000 psi	1600000 psi	1600000 psi	1600000 psi	1600000 psi	
F _{bE} =	2712 psi	2712 psi	2315 psi	9259 psi	2712 psi	
Slenderness Ratio:	<u>< 50 OK</u>	<u>< 50 OK</u>	<u>< 50 OK</u>	<u>< 50 OK</u>	<u>< 50 OK</u>	
R _B =	16	16	17	9	16	
Bending:	< F'b OK 120 ft lbc	< F'b OK	< <u>< F'b OK</u>	< F'b OK 1212 ft lbc	< F'b OK 782 ft lbc	
$M = w L^2/8 + P e/12 = f_b = M/S =$	139 ft-lbs 221 psi	186 ft-lbs 295 psi	255 ft-lbs 405 psi	1312 ft-lbs 1041 psi	782 ft-lbs 1240 psi	
$T_b = IVI/S = S =$	8 in ³	8 in ³	8 in ³	1041 psi 15 in ³	8 in ³	
Shear:	< F'v OK	< F'v OK	< F'v OK	< F'v OK	< F'v OK	
V = w L/2 =	64 lbs	85 lbs	100 lbs	512 lbs	357 lbs	
f _v = 1.5 V/A =	12 psi	15 psi	18 psi	47 psi	65 psi	
A =	8 in ²	8 in ²	8 in ²	17 in²	8 in ²	
Compression:	<u>< F'c OK</u>	<u>< F'c OK</u>	<u>< F'c OK</u>	<u>< F'c OK</u>	<u>< F'c OK</u>	
f _c = P/A =	505 psi	647 psi	337 psi	3 psi	6 psi	
Compression (perp.):	<u>< F'c OK</u>	<u>< F'c OK</u>	<u>< F'c OK</u>	<u>< F'c OK</u>	< F'c OK	
f _{c perp} = P/A =	505 psi	647 psi	337 psi	3 psi	6 psi	
Combined:	<u>< 1.0 OK</u>	<u>< 1.0 OK</u>	<u>< 1.0 OK</u>			
(fc/Fc)2 + {fb/[Fb(1-(fc/FcE)]} =	0.37	0.60	0.44			
Deflection:	<u>> 180 OK</u>	<u>> 180 OK</u>	<u>> 180 OK</u>	<u>> 180 OK</u>	<u>> 180 OK</u>	
D = 22.5 w L ⁴ /E' I =	0.06 in	0.08 in	0.15 in	0.37 in	0.32 in	
I = SPAN /	21 in^4 1817	21 in^4 1363	21 in^4 848	42 in^4 330	21 in^4 324	

UN	UNBRACED WOOD COLUMN ALLOWABLE LOADS (kips)											
	Unbraced Height											
Column Type	Perp. To Grain											
(2) 2x4 DF #2	4.50	3.00	2.10	SR	SR	SR	SR	6.50				
(3) 2x4 DF #2	8.80	5.90	4.20	3.20	SR	SR	SR	9.80				
4x4 DF #2	7.00	4.60	3.30	2.40	SR	SR	SR	7.60				
(2) 2x6 DF #2	7.20	4.70	3.30	SR	SR	SR	SR	10.30				
(3) 2x6 DF #2	20.40	14.70	10.70	8.00	6.20	4.90	SR	15.40				
6x6 DF #2	18.00	15.70	13.00	10.50	8.50	6.90	5.70	18.90				
6x8 DF #2	24.50	21.40	17.80	14.30	11.60	9.40	7.80	25.70				
6x10 DF #2	31.40	27.10	22.50	18.20	14.70	12.00	9.90	32.60				
8x8 DF #2	36.60	34.60	31.90	28.50	24.90	21.30	18.20	35.20				
8x10 DF #2	46.30	43.90	40.40	36.20	31.50	27.00	23.10	44.50				
8x12 DF #2	56.20	53.10	49.00	43.80	38.10	32.70	28.00	53.40				
10x10 DF #2	60.50	58.80	56.50	53.40	49.60	45.20	40.50	56.40				

Wood Column

LIC# : KW-06013353, Build:20.23.2.14

DESCRIPTION: RB2 BEARING

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : IBC 2018

General Information

Analysis Method	Allowable	Stress Design		Wood Section Na	me 6x8	
End Fixities	Top & Bott	om Pinned		Wood Grading/Ma	anuf. Graded Lumber	
Overall Column H	0		21.75 ft	Wood Member Ty	rpe Sawn	
1	n-slender calculati	/		Exact Width	5.50 in Allow Stress Modification Factors	
Wood Species	Douglas Fir-La	arch		Exact Depth	7.50 in Cf or Cv for Bending 1.0	
Wood Grade	No.2			Area	41.250 in^2 Cf or Cv for Compression 1.0	
Fb +	750 psi	Fv	170 psi	Ix	193.359 in^4 Cf or Cv for Tension 1.0	
Fb -	750 psi	Ft	475 psi	ly	103.984 in^4 Cm : Wet Use Factor 1.0	
Fc - Prll	700 psi	Density	31.21 pcf	.,	Ct : Temperature Fact 1.0	
Fc - Perp	625 psi				Cfu : Flat Use Factor 1.0	
E : Modulus of El	asticity	x-x Bending	y-y Bending	Axial		NDS 15.3.
	Basic	1300	1300	1300 ksi	Use Cr : Repetitive ? No	
	Minimum	470	470		ction (buckling) along columns : Fully braced against buckling ABOUT Y-Y Axis	

Y-Y (depth) axis : Unbraced Length for buckling ABOUT X-X Axis = 21.75 1

Service loads entered. Load Factors will be applied for calculations.

SNAKE RIVER ENGINEERING

Applied Loads

Column self weight included : 194.453 lbs * Dead Load Factor AXIAL LOADS ... Axial Load at 21.750 ft, D = 1.230, S = 9.420 k

DESIGN SUMMARY

Bending & Shear Check Results PASS Max. Axial+Bending Stress Ration	o = 0.9155 : 1	Maximum SERVICE	Lateral Loa	d Reactions		
Load Combination	+D+S	Top along Y-Y	0.0 k	Bottom	along Y-Y	0.0 k
Governing NDS Forumla	Comp Only, fc/Fc'	Top along X-X	0.0 k	Bottom	along X-X	0.0 k
Location of max above base	0.0 ft	Maximum SERVICE	Load Later	al Deflection	s	
At maximum location values are . Applied Axial Applied Mx	10.844 k 0.0 k-ft	Along Y-Y for load combina	0.0 in ation : n/a	at 0.	0 ft above base	9
Applied My Fc : Allowable	0.0 k-ft 287.166 psi	Along X-X for load combina	0.0 in ation : n/a	at 0.	0 ft above base	9
	p	Other Factors used	to calculate	allowable st	resses	
PASS Maximum Shear Stress Ratio = Load Combination Location of max.above base Applied Design Shear Allowable Shear	0.0 : 1 +0.60D 21.750 ft 0.0 psi 272.0 psi			<u>Bending</u>	Compression	<u>Tension</u>

Load Combination Results

	-	-	1	<u> Maximum Axial</u>	+ Bendin	g Stress Ratio	<u>s</u> <u>Maxim</u>	um Sh	near R	atios	
Load Combination	CD	С _Р		Stress Ratio	Status	Location	Stress Ratio	Sta	atus	Loc	ation
D Only	0.900	0.438		0.1251	PASS	0.0 ft	0.0	P	ASS	21	.750 ft
+D+S	1.150	0.357		0.9155	PASS	0.0 ft	0.0	P	ASS	21	.750 ft
+D+0.750S	1.150	0.357		0.7167	PASS	0.0 ft	0.0	P	ASS	21	.750 ft
+0.60D	1.600	0.266		0.06965	PASS	0.0 ft	0.0	P	ASS	21	.750 ft
Maximum Reactions							Note: Only non-	-zero r	eactio	ns ar	e listed.
	X-X Axis R	leaction	k	Y-Y Axis Rea	ction Ax	ial Reaction	My - End Moments	k-ft	Mx - I	End N	Noments
Load Combination	@ Base	@ Top		@ Base @	Тор	@ Base	@ Base @ To	р	@ Ba	ase	@ Top
D Only						1.424					
+D+S						10.844					
+D+0.750S						8.489					
07/05/23								Pa	ge 49	of 61	

Project File: 05 Beams.ec6 (c) ENERCALC INC 1983-2022

Project Title: Engineer: Project ID: Project Descr:

Wood Column						-	ile: 05 Bea	
LIC# : KW-06013353, Build:20.23.2.14		NAKE RIVEF	RENGINEEF	RING		(c) ENE	RCALC INC	1983-2022
DESCRIPTION: RB2 BEA	RING							
Maximum Reactions					Note: C	nly non-zero	reactions a	re listed.
				Axial Reac		oments k-ft		
Load Combination	@ Base @ Top	@ Base	е @ Тор	@ Base	0	@ Тор	@ Base	@ Тор
+0.60D S Only				0.85 9.42				
Maximum Deflections for Lo	and Combinations			5.42	.0			
Load Combination	Max. X-X Deflection Dis	tance	Max. Y-Y	Deflection	Distance			
D Only	0.0000 in	0.000ft		0.000 in	0.000 ft			
+D+S	0.0000 in	0.000ft		0.000 in	0.000 ft			
+D+0.750S +0.60D	0.0000 in 0.0000 in	0.000ft 0.000ft		0.000 in 0.000 in	0.000 ft 0.000 ft			
S Only	0.0000 in	0.000ft		0.000 in	0.000 ft			
Sketches								
7.50 in	Load 1		+X		Height = 21,750 f.		Height = 21.750 ft	
	6x8							

5.50 in

Wood Column

LIC# : KW-06013353, Build:20.23.2.14

DESCRIPTION: FB4 BEARING

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : IBC 2018

General Information

Analysis Mathad		raaa Daaian		Wood Section Nar	ma 0.40
Analysis Method		0			
End Fixities	Top & Bottor	n Pinned		Wood Grading/Ma	anuf. Graded Lumber
Overall Column H	Height n-slender calculation		9 ft	Wood Member Ty	pe Sawn
1		/		Exact Width	7.50 in Allow Stress Modification Factors
Wood Species	Douglas Fir-Lard	ch		Exact Depth	7.50 in Cf or Cv for Bending 1.0
Wood Grade	No.2			Area	56.250 in^2 Cf or Cv for Compression 1.0
Fb +	750 psi	Fv	170 psi	lx	263.672 in^4 Cf or Cv for Tension 1.0
Fb -	750 psi	Ft	475 psi	ly	263.672 in 4 Cm : Wet Use Factor 1.0
Fc - Prll	700 psi	Density	31.21 pcf	'y	Ct : Temperature Fact 1.0
Fc - Perp	625 psi				Cfu : Flat Use Factor 1.0
E : Modulus of El	asticity X-	x Bending	y-y Bending	Axial	
		Ū	,,		Kf : Built-up columns 1.0 NDS 15
	Basic	1300	1300	1300 ksi	Use Cr : Repetitive ? No
	Minimum	470	470	Brace condition for deflec	tion (buckling) along columns :
				X-X (width) axis :	Unbraced Length for buckling ABOUT Y-Y Axis = 9 ft, K
				Y-Y (depth) axis :	Unbraced Length for buckling ABOUT X-X Axis = 9 ft, K

SNAKE RIVER ENGINEERING

Applied Loads

Column self weight included : 109.723 lbs * Dead Load Factor AXIAL LOADS . . . Axial Load at 9.0 ft, D = 4.078, S = 26.091 k

DESIGN SUMMARY

Bending & Shear Check Results

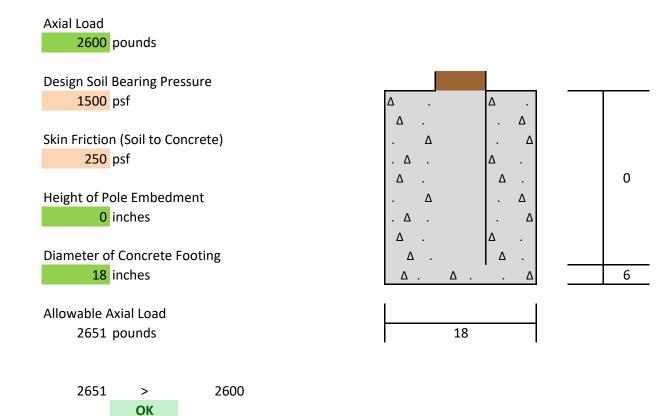
PASS Max. Axial+Bending Stress Ratio	0.7521 : 1	Maximum SERVICI	E Lateral Load	Reactions		
Load Combination	+D+S	Top along Y-Y	0.0 k	Bottom alon	ig Y-Y	0.0 k
Governing NDS Forumla	Comp Only, fc/Fc'	Top along X-X	0.0 k	Bottom alon	ig X-X	0.0 k
Location of max.above base	0.0 ft	Maximum SERVICE	E Load Lateral	Deflections		
At maximum location values are .		Along Y-Y	0.0 in at	t 0.0 ft	above base	
Applied Axial Applied Mx	30.279 k 0.0 k-ft	for load combin	nation : n/a			
Applied My	0.0 k-ft	Along X-X	0.0 in at	t 0.0 ft	above base	
Fc : Allowable	715.71 psi	for load combir	nation : n/a			
	•	Other Factors used	d to calculate a	llowable stress	ses	
PASS Maximum Shear Stress Ratio =	0.0 : 1			Bending Co	ompression	Tension
Load Combination	+0.60D					
Location of max.above base	9.0 ft					
Applied Design Shear	0.0 psi					
Allowable Shear	272.0 psi					

Load Combination Results

	_	-	1	Maximum Axial	+ Bending	Stress Ratio	<u>s Ma</u>	ximum	Shear R	<u>atios</u>
Load Combination	CD	С _Р		Stress Ratio	Status	Location	Stress R	atio	Status	Location
D Only	0.900	0.917		0.1288	PASS	0.0 ft	0.0)	PASS	9.0 ft
+D+S	1.150	0.889		0.7521	PASS	0.0 ft	0.0)	PASS	9.0 ft
+D+0.750S	1.150	0.889		0.5901	PASS	0.0 ft	0.0)	PASS	9.0 ft
+0.60D	1.600	0.833		0.04788	PASS	0.0 ft	0.0)	PASS	9.0 ft
Maximum Reactions							Note: Only r	on-zer	o reactio	ns are listed.
	X-X Axis F	Reaction	k	Y-Y Axis Rea	ction Axia	al Reaction	My - End Mome	nts k-f	it Mx-	End Moments
Load Combination	@ Base	@ Top		@ Base @	Тор (@ Base	@ Base @	Тор	@ Ba	ase @ Top
D Only						4.188				
+D+S						30.279				
+D+0.750S						23.756				
07/05/23								1	Page 51	of 61

07/05/23

Project File: 05 Beams.ec6


Service loads entered. Load Factors will be applied for calculations.

(c) ENERCALC INC 1983-2022

Project Title: Engineer: Project ID: Project Descr:

Wood Columr								•	ile: 05 Bea	
LIC# : KW-06013353, Bu DESCRIPTION:		IG	SNAKE RIV	/ER ENGINEEF	RING			(c) ENEI	RCALC INC	1983-2022
Maximum Reaction	ons							nly non-zero		
Load Combination		X-X Axis Reaction @ Base @ Top		Axis Reaction ase @ Top	Axial Read @ Bas		My - End Mo @ Base	oments k-ft @ Top	Mx - End @ Base	
+0.60D S Only					2.5 26.0					
Maximum Deflect										
Load Combination	N	lax. X-X Deflection		Max. Y-Y	/ Deflection					
D Only +D+S +D+0.750S +0.60D S Only Sketches		0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in	0.000ft 0.000ft 0.000ft 0.000ft 0.000ft		0.000 in 0.000 in 0.000 in 0.000 in 0.000 in		0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft			
7.50 in		Load	1	+X 		Height = 30 ft			Height = 50 ft	
		8x8 7.50 in								

Pole Soil Bearing Pressure

Program: Continuous Footing

Roof					
Roof Dead	(17psf)	(6.0	Oft)	=	102plf
Snow Live	(150psf)	(6.0	Oft)	=	900plf
Upper Floor					
Floor Dead	(12psf)	(.0	ft)	=	plf
Floor Live	(40psf)		ft)	=	plf
Main Floor					
Floor Dead	(12psf)	(4.(Oft)	=	48plf
Floor Live	(40psf)	(4.(Oft)	=	160plf
Deck Cover					
Roof Dead	(17psf)	(.0	ft)	=	plf
Snow Live	(150psf)	.0)	ft)	=	plf
Deck Floor					
Floor Dead	(12psf)	(.0	ft)	=	plf
Snow Live	(150psf)	(.0	ft)	=	plf
Misc					
Wall Load:	(12psf)	(10.	5ft)	=	126plf
Conc Stem:	(145pcf)		.5ft)	=	145plf
Misc Load:	(.0ft)	(.0ft)	(.0ft)	=	plf
					1321plf
Use Fo	ooting Width:	12	x	8	in

Use Footing Width:	12	Х	8	in
W/		(2)	#4	Cont.

Program: Continuous Footing

Roof				
Roof Dead	(17psf)	(21.2ft)	=	360plf
Snow Live	(150psf)	(21.2ft)	=	3174pl
				-
Upper Floor				
Floor Dead	(12psf)	(.Oft)	=	plf
Floor Live	(40psf)	(.0ft)	=	plf
Main Floor				
Floor Dead	(12psf)	(7.0ft)	=	84plf
Floor Live	(40psf)	(7.0ft)	=	280plf
Deck Cover				
Roof Dead	(17psf)	(.0ft)	=	plf
Snow Live	(150psf)	(.0ft)	=	plf
Deck Floor				
Floor Dead	(12psf)	(.0ft)	=	plf
Snow Live	(150psf)	(.0ft)	=	plf
Misc				
Wall Load:	(12psf)	(10.5ft)	=	126plf
Conc Stem:	(145pcf)	(2 x .5ft)	=	145plf
Misc Load:	(.0ft)	(.0ft) (.0ft)	=	plf
				3889pl

Use Footing Width:	36	Х	10	in
w/		(3)	#4	Cont.

Program: Continuous Footing

Roof					
Roof Dead	(17psf)	(22.	Oft)	=	374plf
Snow Live	(150psf)		Oft)	=	3300plf
Upper Floor					
Floor Dead	(12psf)	(.0	ft)	=	plf
Floor Live	(40psf)	(.0	ft)	=	plf
Main Floor					
Floor Dead	(12psf)	(1.0)ft)	=	12plf
Floor Live	(40psf)	(1.0)ft)	=	40plf
Deck Cover					
Roof Dead	(17psf)	(.0	ft)	=	plf
Snow Live	(150psf)	(.0		=	plf
Deck Floor					
Floor Dead	(12psf)	(5.0)ft)	=	60plf
Snow Live	(150psf))ft)	=	750plf
Misc					
Wall Load:	(12psf)	(10.	5ft)	=	126plf
Conc Stem:	(145pcf)		.5ft)	=	145plf
Misc Load:	(.0ft)	(.0ft)	(.0ft)	=	plf
					4767plf
Use Fo	ooting Width:	48	x	10	in

Use Footing Width:	48	X	10	in
W/		(4)	#4	Cont.

Program: Continuous Footing

Roof					
Roof Dead	(17psf)	(7.0	Oft)	=	119plf
Snow Live	(150psf)	(7.0	Oft)	=	1050plf
Upper Floor					
Floor Dead	(12psf)	(.0	ft)	=	plf
Floor Live	(40psf)		ft)	=	plf
Main Floor					
Floor Dead	(12psf)	(1.0	Oft)	=	12plf
Floor Live	(40psf)	(1.0	Oft)	=	40plf
Deck Cover					
Roof Dead	(17psf)	0.)	ft)	=	plf
Snow Live	(150psf)	.0)	ft)	=	plf
Deck Floor					
Floor Dead	(12psf)	(1.0	Oft)	=	12plf
Snow Live	(150psf)	(1.0	Oft)	=	150plf
Misc					
Wall Load:	(12psf)	(10.	5ft)	=	126plf
Conc Stem:	(145pcf)	(2 x	.5ft)	=	145plf
Misc Load:	(.0ft)	(.0ft)	(.0ft)	=	plf
					1614plf
Use Fo	ooting Width:	16	х	8	in

Use Footing Width:	16	X	8	in
W/		(2)	#4	Cont.

Program: Continuous Footing

Roof				
Roof Dead	(17psf)	(12.2ft)	=	207plf
Snow Live	(150psf)	(12.2ft)	=	1824pl
				•
Upper Floor				
Floor Dead	(12psf)	(.0ft)	=	plf
Floor Live	(40psf)	(.0ft)	=	plf
Main Floor				
Floor Dead	(12psf)	(.Oft)	=	plf
Floor Live	(40psf)	(.0ft)	=	plf
Deck Cover				
Roof Dead	(17psf)	(.0ft)	=	plf
Snow Live	(150psf)	(.0ft)	=	plf
Deck Floor				
Floor Dead	(12psf)	(3.1ft)	=	38plf
Snow Live	(150psf)	(3.1ft)	=	469plf
Misc				
Wall Load:	(12psf)	(10.5ft)	=	126plf
Conc Stem:	(145pcf)	(2 x .5ft)	=	145plf
Misc Load:	(.0ft)	(.0ft) (.0ft)	=	plf
				2808pl

Use Footing Width:	30	Х	10	in
W/		(3)	#4	Cont.

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof				
Roof Dead	(17psf)	(11.2ft)	=	190plf
Snow Live	(150psf)	(11.2ft)	=	1674plf

Upper Floor				
Floor Dead	(12psf)	(.0ft)	=	plf
Floor Live	(40psf)	(.0ft)	=	plf

Main Floor				
Floor Dead	(12psf)	(.0ft)	=	plf
Floor Live	(40psf)	(.0ft)	=	plf

Deck Floor				
Floor Dead	(12psf)	(.0ft)	=	plf
Snow Live	(150psf)	(.0ft)	=	plf

Misc				
Wall Load:	(12psf)	(10.5ft)	=	126plf
Conc Stem:	(145pcf)	(2 x .5ft)	=	145plf
Misc Load:	(.0ft)	(.0ft) (.0ft)	=	plf

2135plf

Use Footing Width:	24	Х	8	in
W/		(2)	#4	Cont.

Program: Continuous Footing

Roof					
Roof Dead	(17psf)	(3.	Oft)	=	51plf
Snow Live	(150psf)	(3.0ft)		=	450plf
			<i>,</i>		•
Upper Floor					
Floor Dead	(12psf)	(1.	Oft)	=	12plf
Floor Live	(40psf)	(1.0ft)		=	40plf
Main Floor					
Floor Dead	(12psf)	(1.	Oft)	=	12plf
Floor Live	(40psf)		Oft)	=	40plf
					_
Deck Cover					
Roof Dead	(17psf)	(5.	Oft)	=	85plf
Snow Live	(150psf)	(5.0ft)		=	750plf
Deck Floor					
Floor Dead	(30psf)	(5.	Oft)	=	150plf
Snow Live	(150psf)	(5.0ft)		=	750plf
Misc					
Wall Load:	(12psf)	(10	.5ft)	=	126plf
Conc Stem:	(145pcf)		.5ft)	=	145plf
Misc Load:	(.0ft)	(.0ft)	(.0ft)	=	plf
					2531plf
Use Fo	ooting Width:	24	x	8	in

Use Footing Width:	24	Х	8	in
W/		(2)	#4	Cont.

PAD FOOTING DESIGN CAPACITIES:

Soil Bearing (1500 psf)						
Dimensions (Inches)	Capacity	# of Bars	Min. Col. Size			
72 x 72 x 12	47,500 lbs	10	3.5 sq.			
66 x 66 x 12	39,750 lbs	8	3.5 sq.			
60 x 60 x 10	33,450 lbs	6	3.5 sq.			
54 x 54 x 10	27,000 lbs	5	3.5 sq.			
48 x 48 x 8	21,500 lbs	4	3.5 sq.			
42 x 42 x 8	16,500 lbs	4	3.5 sq.			
36 x 36 x 8	12,000 lbs	4	3.5 sq.			
30 x 30 x 8	8,350 lbs	3	3.5 sq.			
24 x 24 x 8	5,300 lbs	2	3.5 sq.			
18 x 18 x 8	2,900 lbs	2	3.5 sq.			

Bars to be 3 1/2" from bottom of pad. Evenly space in both directions.

CONT. FOOTING DESIGN CAPACITIES:

	Soil Bearing (1500 psf)						
Dimen	Dimensions (Inches)		Capacity	# of Bars			
60	х	10	6,850 plf	6			
54	х	10	6,200 plf	5			
48	х	10	5,500 plf	4			
42	х	10	4,750 plf	4			
36	х	10	4,000 plf	3			
30	х	10	3,400 plf	3			
24	х	8	2,800 plf	2			
18	х	8	2,100 plf	2			
16	х	8	1,850 plf	2			
12	х	8	1,350 plf	2			
Bars to	Bars to be 3 1/2" from bottom of footing.						