Structural Calculations

Project Title: Kaczmarek ADU/Shop

Lot 2 & 3 Block 2 King's

Address: Pines Estates

Location: Adams County, Idaho

Job #: 2023-5574 ADU/Shop

Prepared in accordance with 2018 IBC. Calculations expire by: 09/18/2024

09/18/23 Page 1 of 75

SITE SPECIFIC DESIGN CRITERIA:

Snow Criteria:

Roof Load (P_f) **150 psf** Ground Load (Pg) 150 psf Exposure Factor (C_e) 1.0

Partially Thermal Factor (C_t) Typical 1.0 1.0 Importance (I_s)

Wind Criteria:

C

1.0

Ш

Wind Speed (V₃) 115 mph Wind Exposure Wind Importance (Iw) **Building Category**

Open Terrain

Seismic Criteria:

Site Class D Stiff Soil 0.42 1.47 Ss Fa **S1** 0.13 2.28 0.41 0.20 S_{DS} S_{D1} **Risk Category** Ш Other Seismic Importance (I_F) 1.0 Seismic Design Category C

Seismic Criteria (continued):

Wall Response Design Material **Base Shear** Coeff., R

OSB .08Wp 6.5 Typ @ Ext 2 **GYP** .24Wp Typ @ Int **CANT COL** .33Wp 1.5

Soil Criteria:

Brg. Strength

1500 psf

STRUCTURE SPECIFIC DESIGN CRITERIA:

Live Loads:

Typ Residential 40 psf Garage (P.V.) 50 psf Sleeping Area's 30 psf

(SDC)

Floor Dead Loads:

Deck 2.5 Joist 2.0 Ceiling 2.0 Flooring 2.5 Misc 3.0 **TOTAL** 12 psf

Roof Dead Loads:

Deck 1.5 Insulation 2.0 Roofing 3.0 Joist 2.5 Ceiling 3.0 4.5 Misc TOTAL 17 psf

Interior Wall Dead Loads:

Studs 2.0 Gyp. Board 2.5 3.0 Misc TOTAL 8 psf

Exterior Wall Dead Loads:

Studs 2.0 Siding 9.0 Insulation 0.5 Gyp. Board 2.5 1.5 Sheating Misc 3.0 TOTAL 18 psf

Deck Dead Load

4.4 Decking Joist 2.0 50.0 Conc. 3.0 Misc **TOTAL** 60 psf

09/18/23 Page 2 of 75

WIND ANALYSIS: Low-rise Building - Based on IBC / ASCE 7

INPUT DATA

ANALYSIS

Velocity pressure

 $q_h = 0.00256 K_z K_{zt} K_d \frac{K_e}{V^2}$ = 24.49 psf

where: q_h = velocity pressure at mean roof height, h. (Eq. 26.10-1 page 268)

K_z = velocity pressure exposure coefficient evaluated at height, h, (Tab. 26.10-1, pg 2 = **0.85**

K_d = wind directionality factor. (Tab. 26.6-1, for building, page 266) = **0.85**

h = mean roof height = 15.17 ft K_e = ground elevation factor. (1.0 per Sec. 26.9, page 268) < 60 ft, [Satisfactory] (ASCE 7)

< 60 ft, [Satisfactory] (ASCE 7-16 26.2.1)
< Min (L, B), [Satisfactory] (ASCE 7-16 26.2.2)</pre>

Design pressures for MWFRS

 $p = q_h [(G C_{pf})-(G C_{pi})]$

where: p = pressure in appropriate zone. (Eq. 28.3-1, page 311). $p_{min} = 16$ psf (ASCE 7-16 28.3.4)

G C_{pf} = product of gust effect factor and external pressure coefficient, see table below. (Fig. 28.3-1, page 312 & 313)

G C_{pi} = product of gust effect factor and internal pressure coefficient.(Tab. 26.13-1, Enclosed Building, page 271)

= **0.18** or **-0.18**

.04B, 0.04L), 3] = **6.07** ft

Net Pressures (psf), Basic Load Cases

rect ressures (psi), busic boud cuses												
·	Roof ang	le q =	Roof angle q = 18.43									
Surface	C C	Net Pre	ess. W/	C C	Net Pro	ess. W/						
	G C _{p f}	(+GC _{pi})	(-GC _{pi})	G C _{p f}	(+GC _{pi})	(-GC _{p i})						
1	0.52	8.24	17.05	-0.45	-15.43	-6.61						
2	-0.69	-21.30	-12.49	-0.69	-21.30	-12.49						
3	-0.47	-15.88	-7.07	-0.37	-13.47	-4.65						
4	-0.42	-14.58	-5.76	-0.45	-15.43	-6.61						
5				0.40	5.39	14.20						
6				-0.29	-11.51	-2.69						
1E	0.78	14.70	23.51	-0.48	-16.16	-7.35						
2E	-1.07	-30.61	-21.79	-1.07	-30.61	-21.79						
3E	-0.67	-20.89	-12.08	-0.53	-17.39	-8.57						
4E	-0.62	-19.54	-10.73	-0.48	-16.16	-7.35						
5E				0.61	10.53	19.34						
6E				-0.43	-14.94	-6.12						

Net Pressures (psf), Torsional Load Cases

11011100001100 (poi/) 10101011011 =00											
	Roof angle $q = 18.43$										
Surface		Net Press. W/									
	G C _{p f}	(+GC _{pi})	(-GC _{pi})								
1T	0.52	2.06	4.26								
2T	-0.69	-5.33	-3.12								
3T	-0.47	-3.97	-1.77								
4T	0.00	-3.64	-1.44								
	Roof angle q = 0.00										
Surface		Net Press. W/									
	G C _{p f}	(+GC _{pi})	(-GC _{pi})								
5T	0.40	1.35	3.55								
6T	-0.29	-2.88	-0.67								

+ / - Wind Pressure 64%

09/18/23 Page 3 of 75

Load Case A (Transverse) Load Case B (Longitudinal) Basic Load Cases

Load Case A (Transverse) Load Case B (Longitudinal) <u>Torsional Load Cases</u>

Design pressures for components and cladding

 $p = q_h[(G C_p) - (G C_{pi})]$

p = pressure on component. (Eq. 30.3-1, pg 33where:

> 16.00 psf (ASCE 7-16 30.2.2) p_{min} =

 $GC_p =$ 1.00 external pressure coefficie

see table below. (ASCE 7-16 30.3.2)

18.43 ° q =

po

(ASCE 7-16 28.3.3)

overhang =	-84.48	psf	Roof	θ ≤ 7 °
Overnang		1		

	Effective	Zor	ne 1	Zone 1'		Zone 2		Zone 2e		Zone 2n		Zone 2r	
Comp 8	Area (ft ²)	GC_P	- GC _P	GC_P	- GC _P	GC_P	- GC _P	GC_P	- GC _P	GC_P	- GC _P	GC_P	- GC _P
Comp. & Cladding	2133	0.30	-0.80	0.30	-0.80	0.30	-2.20	0.30	-0.80	0.30	-1.00	0.30	-1.00
Cooffe	Effective			Zone 3e		Zone 3r		Zone 4		Zone 5			
Coens.	Area (ft ²)	GC_P	- GC _P	GC_P	- GC _P	GC_P	- GC _P	GC_P	- GC _P	GC_P	- GC _P		
	27	27 0.30 -2.50 0.3		0.30 -2.50		0.30 -1.80		0.99 -1.09		0.99 -1.38			

	Zoı	Zone 1		ie 1 '	Zone 2		Zone 2e		Zon	e 2 n	Zone 2r	
	Positive	Negative	Positive	Negative	Positive	Negative	Positive	Negative	Positive	Negative	Positive	Negative
Comp. & Cladding	2.94	-15.18	2.94	-15.18	2.94	-49.46	2.94	-15.18	2.94	-20.08	2.94	-20.08
Pressures	Zone 3		Zone 3e		Zone 3r		Zone 4		Zone 5			
	Positive	Negative	Positive	Negative	Positive	Negative	Positive	Negative	Positive	Negative	(Max Pressure	
	2.94	-56.81	2.94	-56.81	2.94	-39.67	19.82	-22.27	19.82	-29.36	56.81 psf)	

OADS	LOAD CASE 'A' FACTORED LO
3.3 psf	$0.6*W_r = (Z_2 + Z_3) * 0.6 =$
5.8 psf	$0.6*W_{rE} = (Z_{2E} + Z_{3E}) * 0.6 =$
13.7 psf	$0.6*W_w = (Z_1 + Z_4) * 0.6 =$
20.5 psf	$0.6*W_{wE} = (Z_{1E} + Z4E) * 0.6 =$

LOAD CASE 'B' FACTORED	LOADS
$0.6*W_r = (Z_2 + Z_3) * 0.6 =$	4.7 psf
$0.6*W_{rE} = (Z_{2E} + Z_{3E}) * 0.6 =$	7.9 psf
$0.6*W_w = (Z_5 + Z_6) * 0.6 =$	10.1 psf
$0.6*W_{wE} = (Z_{5E} + Z_{6E}) * 0.6 =$	15.3 psf

ROOF COMPONENTS FACTORED LOAD										
0.6*Z _{r,c&c} =	12.0 psf									

WALL COMPONENTS FACTORED LOAD										
0.6*Z _{w,c&c} =	13.4 psf									

09/18/23 Page 4 of 75

OSB SEISMIC LOADING ANALYSIS

IBC / ASCE 7: Equivalent Lateral Force (ELF) Procedure:

INPUT DATA

DESIGN SUMMARY

kips, total

Typical floor height:	h =	9	ft	$C_s = 1.2 * S_{DS} / (R / I_e) = 0.0753$	<= Applicable
Typical floor weight:	$w_x =$	154.4	kips	Period Parameter, $x = 0.75$, ASCE Tab 12.8-2	
Number of floors:	n =	2		Period: $T_a = C_t(h_n)^x = 0.20$ sec, ASCE 12.8.2.	1
Importance factor (ASCE 11.5.1):	I _e =	1.00		$C_s < S_{D1} / [(R / I_e) T_a] = 0.1530$, ASCE Tab 12.8.1	.1 <= Not Applicable
Design spectral response:	S _{DS} =	0.41	g	$C_s > 0.044 S_{DS} I_e = 0.0179$, ASCE Tab 12.8.1	1 <= Not Applicable
	$S_{D1} =$	0.20	g	$C_s > 0.5 S_1 / (R / I_e) = 0.0100$, ASCE Tab 12.8.1	1 <= Not Applicable
Mapped spectral resp.:	S ₁ =	0.13	g	k = 2.14 , (ASCE 12.8.3, pa	ge 91)
Period Parameter, C _t :					
(ASCE Tab 12.8-2):	$C_t =$	0.020		$V = C_s W = 0.0753 W$	
Resp. coefficient: (ASCE					
Tab. 12.2.1):	R =	6.5		0.7 * V = 0.0527 W	
Seismic design category:	SDC =	С			

SEISMIC COMPONENT & ANCHORING ANALYSIS

Out-of-plane seismic force for wall design (ASCE 7, Sec.12.11.1)

$$W_{1,seismic} = MAX \left(0.4 I_{SDS} W_p , 0.1 W_p \right)$$
 = **0.2** W_p = **0.2** psf <= **USE FOR DIAPHRAGMS**

Where :
$$W_p$$
 = 1.0 psf , I_e = 1.00 (CBC / IBC Tab. 1604.5 & ASCE 7 Tab. 1.5-2)

 $h_n = 21.3 ft$

Out-of-plane seismic force for anchorage design For seismic design category A & B, any diaphragm (ASCE 7 Sec. 12.11.2)

$$F_{anch,seismic} = MAX \left[0.4 S_{DS} I_{W_p} \frac{\left(h + h_p\right)^2}{2h} , 0.1 W_p \frac{\left(h + h_p\right)^2}{2h} , 400 S_{DS} I , F_{min} \right] =$$

Where : $F_{min} = 0.17$ plf, 1.53 W_p = 163 plf (Horizontal) <= **Not Applicable** (ASCE 7 Sec. 12.11.2 & 11.7.3)

For seismic design category C and above, flexible diaphragm (ASCE 7 Sec. 12.11.2.1)

$$F_{anch,seismic} = MAX \left[0.8 S_{DS} IW_{p} \frac{\left(h + h_{p}\right)^{2}}{2h} , 0.1 W_{p} \frac{\left(h + h_{p}\right)^{2}}{2h} , 400 S_{DS} I , F_{min} \right] =$$
= **3.06** W_p = **163** plf (Horizontal) <= **Applicable**

For connections (ASCE 7 Sec. 12.11.2.1)

$$F_{conn,seismic} = MAX [0.133 S_{DS} w_p, 0.5 w_p] =$$
 0.5 W_p = **0.5** plf (Horizontal)

09/18/23 Page 5 of 75

GYP SEISMIC LOADING ANALYSIS

IBC / ASCE 7: Equivalent Lateral Force (ELF) Procedure:

INPUT DATA

Seismic design category: SDC = C

DESIGN SUMMARY

kips, total

Typical floor height:	h =	9	ft	$C_s = 1.2 * S_{DS} / (R / I_e) = 0.2447$	<= Applicable
Typical floor weight:	$w_x =$	154.4	kips	Period Parameter, $x = 0.75$, ASC	CE Tab 12.8-2
Number of floors:	n =	2		Period: $T_a = C_t (h_n)^x = 0.20$ sec,	ASCE 12.8.2.1
Importance factor (ASCE 11.5.1):	I _e =	1.00		$C_s < S_{D1} / [(R / I_e) T_a] = 0.4973$, ASC	CE Tab 12.8.1.1 <= Not Applicable
Design spectral response:	S _{DS} =	0.41	g	$C_s > 0.044 S_{DS} I_e = 0.0179$, ASC	CE Tab 12.8.1.1 <= Not Applicable
	S _{D1} =	0.20	g	$C_s > 0.5 S_1 / (R / I_e) = 0.0325$, ASC	CE Tab 12.8.1.1 <= Not Applicable
Mapped spectral resp.:	S ₁ =	0.13	g	k = 2.14 , (AS	CE 12.8.3, page 91)
Period Parameter, C _t :					
(ASCE Tab 12.8-2):	C _t =	0.020		$V = C_s W = 0.2447 W$	
Resp. coefficient: (ASCE					
Tab. 12.2.1):	R =	2		0.7 * V = 0.1713 W	

SEISMIC COMPONENT & ANCHORING ANALYSIS

Out-of-plane seismic force for wall design (ASCE 7, Sec.12.11.1)

$$W_{1,seismic} = MAX \left(0.4 I_{SDS} W_p , 0.1 W_p \right)$$
 = **0.2** W_p = **0.2** psf <= **USE FOR DIAPHRAGMS**

Where : $W_p = 1.0 \text{ psf}$, $I_e = 1.00$ (CBC / IBC Tab. 1604.5 & ASCE 7 Tab. 1.5-2)

 $h_n = 21.3 ft$

Out-of-plane seismic force for anchorage design For seismic design category A & B, any diaphragm (ASCE 7 Sec. 12.11.2)

$$F_{anch,seismic} = MAX \left[0.4 S_{DS} IW_p \frac{\left(h + h_p\right)^2}{2h} , 0.1 W_p \frac{\left(h + h_p\right)^2}{2h} , 400 S_{DS} I , F_{min} \right] =$$

Where : $F_{min} = 0.17$ plf, 1.53 W_p = 163 plf (Horizontal) <= **Not Applicable** (ASCE 7 Sec. 12.11.2 & 11.7.3)

For seismic design category C and above, flexible diaphragm (ASCE 7 Sec. 12.11.2.1)

$$F_{anch,seismic} = MAX \left[0.8 S_{DS} IW_{p} \frac{\left(h + h_{p}\right)^{2}}{2h} , 0.1 W_{p} \frac{\left(h + h_{p}\right)^{2}}{2h} , 400 S_{DS} I , F_{min} \right] =$$
= **3.06** W_p = **163** plf (Horizontal) <= **Applicable**

For connections (ASCE 7 Sec. 12.11.2.1)

 $F_{conn,seismic} = MAX [0.133 S_{DS} w_p, 0.5 w_p] =$ **0.5** W_p = **0.5** plf (Horizontal)

09/18/23 Page 6 of 75

1) FOUNDATIONS & SLAB ON GRADE:

- a) INSTALL FOUNDATION AND PREPARE SOILS FOR SLABS & FOUNDATIONS ACCORDING TO IBC CHAPTER 18.
 PROVIDE POSITIVE DRAINAGE AWAY FROM STRUCTURE AND AVOID EXCESSIVE WETTING & DRYING DURING EXCAVATIONS.
- b) ALL FOOTING AND FOUNDATION DESIGNS ARE BASED ON AN ALLOWABLE SOIL BEARING CAPACITY (SEE DESIGN CRITERIA) OF COMPETENT NATIVE SOIL. IF THE SITE HAS A LOWER BEARING CAPACITY THAN ASSUMED THE FOUNDATION PLAN WILL NEED TO BE REDESIGNED. IF SOIL IS DISTURBED, COMPACT SOIL IN 8" LIFTS TO 95% MAXIMUM DRY DENSITY PER ASTM D1557 OR IN ACCORDANCE WITH GEOTECHNICAL REPORT ASSOCIATED WITH PROJECT.
- c) REPLACE ANY ENCOUNTERED EXISTING FILL WITH COMPACTED FILL, SEE NOTE 1.A. ABOVE FOR MORE INFORMATION.
- d) MINIMUM FROST DEPTH (SEE DESIGN CRITERIA) FROM LOWEST ADJACENT FINISH GRADE TO BOTTOM OF FOOTING SHALL BE MAINTAINED FOR ALL EXTERIOR FOOTINGS.
- e) CONTRACTOR TO VERIFY LOCATIONS FOR STEP FOOTINGS AND FOUNDATION WALLS BASED ON SITE RELATED FINISHED GRADE, IF NECESSARY. FOOTING STEPS ARE TO BE A MAXIMUM OF (2) VERTICALLY TO (1) HORIZONTALLY.
- f) ALL SLABS SHALL HAVE REINFORCING PER PLANS & CONTROL JOINTS AT 10'-0" SPACING MAXIMUM.
- g) ALL STRUCTURAL FILL BELOW FOOTINGS SHALL EXTEND OUT PAST FOOTINGS AT A SLOPE OF 1 VERTICAL TO 2 HORIZONTAL UNITS TO COMPETENT SOILS.
- h) PROVIDE ADEQUATE DRAINAGE BEHIND ALL WALLS TO ALLEVIATE ANY STANDING WATER.
- i) ALL CONCRETE PAD & APRON LOCATIONS TO BE SECURED TO FOUNDATION WITH #4 DOWELS AT 24" O.C. EXTEND EXPOSED SIDES A MINIMUM OF 8" BELOW FINISHED GRADE.
- i) MINIMUM CONCRETE SLAB DEPTH IS 4".

2) CONCRETE:

- a) ALL CONCRETE WORK TO BE DONE IN ACCORDANCE WITH THE CURRENT ACI "STANDARD SPECIFICATION FOR STRUCTURAL CONCRETE" UNLESS NOTED.
- b) USE ASTM C150 COMPLIANT TYPE I/II CEMENT, MINIMUM OF 450#/YARD.
- c) ALLOW 5% (WITHIN 1.5%) ENTRAINED AIR IN EXPOSED CONCRETE.
- d) ALLOW 4" MAXIMUM SLUMP (WITHOUT SUPERPLASTICIZER).
- e) USE ¾" MAXIMUM NORMAL WEIGHT AGGREGATE. USE OF CHLORIDE ADMIXTURES IS PROHIBITED.
- f) THE MINIMUM COMPRESSIVE STRENGTHS FOR CONCRETE AT 28 DAYS SHALL BE AS FOLLOWS
- 3) (DESIGNED USING 2,500 PSI):
 - i) ALL FOOTINGS, FOUNDATIONS, AND STEM WALLS F'C = 3,000 PSI.
 - ii) SLABS ON GRADE F'C = 3,500 PSI.
 - b) MINIMUM CLEAR PROTECTION FOR REINFORCEMENT SHALL BE AS FOLLOWS:
 - i) PLACED DIRECTLY AGAINST EARTH: 3".
 - ii) FORMED SURFACES #5 BARS OR SMALLER: 1-1/2".
 - iii) STRUCTURAL SLABS & INTERIOR WALLS: 1".
 - c) ALL EMBEDDED ANCHOR BOLTS SHALL BE A36 OR A307 OR F1554 GR. 36 STEEL W/ 7" MIN. EMBEDMENT. ANCHOR BOLTS TO BE WITHIN 1'-0" OF SILL PLATE ENDS, WITH A MIN. OF TWO PER WALL AND NO CLOSER THAN 6" FROM CONCRETE WALL CORNERS.
 - d) SAWN CONTROL & CONSTRUCTION JOINTS SHALL BE MADE AS SOON AS POSSIBLE WITHOUT DAMAGE TO THE SURFACE. FILLING OF SAWN JOINTS WHERE REQUIRED SHALL BE DELAYED AS LONG AS POSSIBLE TO ALLOW MAXIMUM SHRINKAGE TO OCCUR IN SLABS.
 - e) PROTECT ALL CONCRETE FROM FREEZING.
 - f) WET SETTING OF REINFORCING BARS IN FOOTINGS AND WALLS IS NOT ALLOWED.
 - g) BLOCK-OUT ALL STEM WALLS AT ENTRIES AS REQUIRED.
 - h) CONCRETE FORM WORK TO BE OF ADEQUATE STRENGTH AND BRACED TO PREVENT DEFORMATION.
 - i) ALL LOWER LEVEL AND RETAINING WALLS WHICH HAVE FILL HIGHER THAN AN INTERIOR FLOOR LEVEL SHALL HAVE AN APPROVED WATERPROOFING MEMBRANE APPLIED TO WITHIN 3" OF FINISHED GRADE HEIGHT.

09/18/23 Page 7 of 75

- 4) PROVIDE ADEQUATE TEMPORARY BRACING OF CONCRETE AND/OR CMU RETAINING WALLS DURING BACKFILL PRIOR TO INSTALLATION OF MAIN FLOOR FRAMING AND BASEMENT CONCRETE SLAB ON GRADES. WALL DESIGNS ARE BASED ON TOP OF WALL RESTRAINED BY FINISHED FLOOR SYSTEM AND RESISTING SLIDING BY HAVING BASEMENT CONCRETE SLAB ON GRADE FLOOR INSTALLED.
 - a) REQUIRE THAT ALL GRADING, EXCAVATION, AND INSTALLATION OF FOUNDATIONS BE PERFORMED UNDER THE INSPECTION AND TESTING OF A QUALIFIED GEOTECHNICAL CONSULTANT DURING THE CRITICAL STAGES OF CONSTRUCTION.
 - b) STAIN & TEXTURE OF EXPOSED CONCRETE SURFACES PER OWNER'S DIRECTION.
 - c) USE SIMPSON 'SET' OR EQUIVALENT FOR FASTENING POST-INSTALLED ANCHORS TO EXISTING CONCRETE.
 - d) USE 6x6-W4.0xW4.0 WELDED WIRE FABRIC (WWF) FOR SLABS REQUIRING REINFORCEMENT (UNLESS NOTED). PLACE 1-1/2" FROM BOTTOM OF SLAB USING APPROVED METAL DEVICES. LAP ONE FULL MESH AT SPLICES.
 - e) USE ASTM C827 COMPLIANT NON-METALLIC, NON-SHRINK, 3-DAY 4000 PSI GROUT FOR BASEPLATES.
 - f) USE ASTM C1116 COMPLIANT FIBRILLATED POLYPROPYLENE TO REINFORCE SLABS (IF USING FIBER REINFORCEMENT IN LIEU OF WWF).

5) REINFORCING STEEL:

- a) PLACE REBAR ACCORDING TO CURRENT ACI DETAILING MANUAL.
- b) USE ASTM A615 COMPLIANT GRADE 60 BARS; IF INTENDED TO BE WELDED, USE ASTM A706 COMPLIANT GRADE 60 BARS (WELDING OF REBAR NOT PERMITTED UNLESS SPECIFICALLY NOTED OR DETAILED).
- c) MINIMUM LENGTH OF LAPPED SPLICES SHALL BE 48 TIMES BAR DIAMETER UNLESS NOTED. SPLICE TOP BARS NEAR MID-SPAN, BOTTOM BARS NEAR SUPPORTS.
- d) OTHERWISE. STAGGER SPLICES IN WALLS SO THAT NO TWO ADJACENT BARS ARE SPLICED IN THE SAME LOCATION.
- e) WELDED WIRE FABRIC SHALL CONFORM TO ASTM A185, FY = 75,000 PSI.
- f) REINFORCING SHALL BE CONTINUOUS THROUGH ALL COLD JOINTS.
- g) PROVIDE CORNER BARS W/ 18" LEGS AT CORNERS AND INTERSECTING WALLS AND FOOTINGS, SIZE AND PLACEMENT TO MATCH HORIZONTAL REINFORCEMENT.
- h) PROVIDE #4 CONTINOUS HORIZONTALS AT TOP OF WALL, (2) #4 CONTINUOUS IN FOOTINGS, AND (2) #4 CONTINUOUS ABOVE ALL OPENINGS U.N.O. PROVIDE #4 HORIZONTALS AT ALL INTERSECTING FLOORS AND ROOF LEVELS, BOTTOM OF ALL WINDOWS AND AT 10'-0" O.C. MAXIMUM OR PER PLANS.
- i) PROVIDE #4 VERTICALS AT 24" O.C. AT EACH SIDE OF WALL OPENINGS AND AT EACH END OF WALLS W/ STANDARD HOOK EXTENDING INTO FOOTING.
- j) PROVIDE FOUNDATION HOLDOWNS AT ALL SHEAR WALL LOCATIONS PER PLAN, IF APPLICABLE.

6) WOOD FRAMING:

- a) STRUCTURAL LUMBER SHALL BE DOUGLAS FIR-LARCH (DF-L) #2 OR BETTER.
- b) WOOD INSTALLED WITHIN 1" OF CONCRETE OR MASONRY SHALL BE REDWOOD OR PRESSURE TREATED.
- c) PROVIDE WET USE ADHESIVES.
- d) MAXIMUM LUMBER MOISTURE CONTENTS SHALL BE 15%.
- e) ALL FRAMING SHALL BE IN ACCORDANCE WITH THE ADOPTED CODE.
- f) PROVIDE SOLID BLOCKING BELOW ALL BEARING WALLS AND POSTS. PROVIDE BLOCKING AT 24" O.C. AT JOISTS PARALLEL WITH BEARING WALLS ABOVE.
- g) MINIMUM HEADER AT BEARING WALL TO BE 4x8 WITH 2x6 TRIMMER STUD PLUS 2x6 KING STUD EACH SIDE. HEADERS WITH LARGER LOADING OR DIFFERENT BEARING/KING STUD CONDITIONS WILL BE CALLED OUT IN PLANS.
- h) BLOCK AND NAIL ALL HORIZONTAL PANEL EDGES AT SHEAR WALLS & AS NOTED ON THE PLAN.
 - (1) ROOF SHEATHING IN AREAS W/ SNOW LOAD < 50 PSF: 7/16" CDX MINIMUM, 24/16 SPAN RATING WITH 8D AT 6" O.C. EDGE AND 12" O.C. FIELD U.N.O.

09/18/23 Page 8 of 75

- (2) ROOF SHEATHING IN AREAS W/ SNOW LOAD > 50 PSF: 19/32" CDX MINIMUM, 32/16 SPAN RATING WITH 8D AT 6" O.C. EDGE AND 12" O.C. FIELD U.N.O.
- (3) FLOOR SHEATHING: 3/4" CDX MINIMUM, 48/24 SPAN RATING WITH 10D AT 6" O.C. EDGE AND 12" O.C. FIELD U.N.O.
- (4) EXT. WALL SHEATHING: 7/16" CDX MINIMUM, 24/16 SPAN RATING WITH AT 6" O.C. EDGE AND 12" O.C. FIELD U.N.O.
- (5) ALL SPAN RATINGS TO MEET LOCAL CODES.
- i) ORIENTED STRAND BOARD (OSB) WITH THE SAME SPAN RATING MAY BE SUBSTITUTED FOR PLYWOOD NOTED ABOVE. SHEATHING SHALL BE APA RATED EXPOSURE 1. STAGGER SHEATHING END JOINTS 4'-0". PROVIDE 1/8" MINIMUM SPACE AT ALL PANEL EDGES FOR EXPANSION.
- j) ALL EXTERIOR WALLS TO BE 2x6 AT 16" O.C. AND INTERIOR NON-LOAD BEARING PARTITIONS TO BE 2x4 AT 16" O.C. STUD WALLS (U.N.O. ON PLAN).
- k) PROVIDE STEEL STRAPS AT PIPES IN STUD WALLS AS REQUIRED BY THE ADOPTED CODE.
- I) OVER-FRAMING SHALL BE DONE SUCH THAT VERTICAL LOADS ARE TRANSFERRED TO MAIN STRUCTURE BELOW BY DIRECT BEARING AT SPACING NOT TO EXCEED 24" O.C. FOR RAFTERS AND 48" FOR POSTS WHEN SNOW LOAD LESS THAN 50 PSF.
- m) METAL HANGERS AND CONNECTIONS ARE 'SIMPSON' AND SHALL BE INSTALLED PER 'SIMPSON' RECOMMENDATIONS.
- n) ENGINEERED "I" JOISTS TO CONFORM TO ASTM D2559 AND BE DESIGNED, CERTIFIED, ERECTED, INSTALLED, AND BRACED PER MANUFACTURER'S SPECS. ALL REFERENCES ON PLANS ARE FOR WEYERHAEUSER PRODUCTS. USE THESE PRODUCTS OR AN APPROVED EQUIVALENT.
- o) ALL MICROLLAM LVL PRODUCTIONS SHALL CONFORM TO ASTM D2559 AND HAVE THE MINIMUM SECTION PROPERTIES OF Fb = 2600 PSI, Fv = 285 PSI, E = 2,000,000 PSI.
- p) ALL ROOF OPENINGS GREATER THAN 12"x12" SHALL BE FRAMED IN OPENINGS.
- q) GLUE-LAM BEAMS SHALL CONFORM TO ANSI/AITC A190.1 AND BE DOUGLAS FIR COMBINATION 24F-V4 FOR SIMPLY SUPPORTED AND 24F-V8 FOR CANTILEVERED AND/OR DOUBLE SPAN BEAMS, Fb = 2400 PSI, Fv = 165 PSI, E = 1,600,000 PSI. PROVIDE WET USE GLUE ON ALL EXTERIOR LOCATIONS.
- r) ALL NAILS SPECIFIED TO BE COMMON WIRE NAILS U.N.O.

7) PRE-MANUFACTURED METAL PLATED TRUSSES:

- i) TRUSS MANUFACTURER TO PROVIDE PROOF OF 3RD PARTY INSPECTION PER IBC 2303.4.
- ii) PRE-MANUFACTURED TRUSS PROVIDER TO VERIFY ALL LOADING PATTERNS TO FOOTINGS BELOW.
- b) PRE-MANUFACTURED TRUSS PROVIDER TO PROVIDE SUPPORT AT TRUSSES FOR LOADING SHOWN ON ALL PLANS, SECTIONS AND DETAILS. VERIFY SECOND FLOOR LOADING AND SPECIAL CASE POINT LOADING FROM FRAMED ROOF SYSTEMS.
- c) ALL PRE-MANUFACTURED ROOF TRUSSES SHALL BE DESIGNATED AS A DEFERRED SUBMITTAL AND DESIGNED FOR THE ROOF LOADS SHOWN AND ACCOUNT FOR ANY REQUIRED ADDITIONAL DRIFT, VALLEY, OR EAVE LOADS PER CODE.
- d) IN ADDITION TO 7 PSF DEAD LOAD ON TOP CHORD, DESIGN BOTTOM CHORD FOR 10 PSF LIVE LOAD AND 10 PSF DEAD LOAD.
- e) TRUSS SHOP DRAWINGS SHALL BE SUBMITTED TO THE ENGINEER OF RECORD (E.O.R.) FOR REVIEW AND COMPLIANCE.

8) GENERAL STRUCTURAL NOTES:

a) CONTRACTOR TO VERIFY ALL OPENINGS, BUILDING DIMENSIONS, COLUMN LOCATIONS AND DIMENSIONS WITH OWNER, ENGINEER, DRAFTER, AND/OR COMPONENT MANUFACTURERS PRIOR TO POURING OF ANY CONCRETE FOUNDATIONS OR CONSTRUCTION.

09/18/23 Page 9 of 75

- b) THE ENGINEER OF RECORD IS NOT RESPONSIBLE FOR ANY DEVIATIONS FROM THESE PLANS UNLESS SUCH CHANGES ARE AUTHORIZED IN WRITING TO THE ENGINEER OF RECORD.
- c) THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING SAFE AND ADEQUATE SHORING AND/OR TEMPORARY STRUCTURAL STABILITY FOR ALL PARTS OF THE STRUCTURE DURING CONSTRUCTION. THE STRUCTURE SHOWN ON THE DRAWINGS HAS BEEN DESIGNED FOR FINAL CONFIGURATION.
- d) NOTCHING AND/OR CUTTING OF ANY STRUCTURAL MEMBER IN THE FIELD IS PROHIBITED, UNLESS PRIOR CONSENT IS GIVEN BY THE ENGINEER OF RECORD.
- e) DIMENSIONS SHOWN DO NOT INCLUDE THE THICKNESS OF ANY APPLIED FINISH MATERIALS. DIMENSIONS ARE EITHER TO FACE OF STUD, FACE OF MASONRY, OR CENTERLINE OF OPENINGS/STRUCTURE.
- f) ALL WORK TO CONFORM TO ALL LOCAL, STATE, AND NATIONAL CODES.
- g) CONTRACTOR IS RESPONSIBLE FOR ALL FEES, PERMITS, AND INSPECTIONS AS REQUIRED BY GOVERNING AGENCY.
- h) ALL ELEVATION REFERENCES ARE FROM THE MAIN FLOOR ELEVATION, SET AT 0'-0".
- ALL SHOP DRAWINGS FOR STRUCTURAL SYSTEMS TO BE REVIEWED AND STAMPED BY THE ENGINEER OF RECORD.

9) SPECIAL INSPECTIONS & STRUCTURAL OBSERVATIONS:

- a) PER IBC SECTION 1704, WHEN SPECIFICALLY REQUIRED BY THE LOCAL JURISDICTION, A REPRESENTATIVE FROM THE ENGINEER OF RECORD'S OFFICE SHALL BE PRESENT TO PERFORM ON-SITE STRUCTURAL OBSERVATION VISITS. CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION OF ALL SIGNIFICANT TIMES OF CONSTRUCTION WITH THE ENGINEER OF RECORDS OFFICE PRIOR TO THE DAY OF CONSTRUCTION AND/OR PLACEMENT (MINIMUM OF 7 DAYS). SIGNIFICANT TIMES OF CONSTRUCTION ARE AS FOLLOWS:
 - i) PLACEMENT OF STRUCTURALLY RELATED REINFORCED CONCRETE FOUNDATIONS, INCLUDING REBAR.
 - ii) PLACEMENT OF PERIMETER LOAD BEARING WALLS, LOAD SUPPORTING BEAMS AND/OR HEADERS AND LATERAL RESISTING CONNECTION ELEMENTS.
 - iii) COMPLETION OF STRUCTURAL SYSTEMS AS REQUIRED AND/OR DEFINED BY THE LOCAL JURISDICTION.
- b) STRUCTURAL OBSERVATIONS DO NOT INCLUDE OR WAIVE THE RESPONSIBILITY FOR THE SPECIAL INSPECTIONS REQUIRED BY THE IBC SECTION 1705 OR OTHER SECTIONS OF THE CODE AS REQUIRED BY THE LOCAL BUILDING JURISDICTION.
- c) ALL SPECIAL INSPECTIONS SHALL BE PERFORMED TO MEET THE REQUIRMENTS OF THE LATEST IBC AND THE LOCAL BUILDING JURISDICTION.
 - i) ALL SPECIAL INSPECTIONS SHALL BE PERFORMED BY A QUALIFIED PERSON WHO SHALL SHOW COMPETANCE TO THE SATISFACTION OF THE BUILDING OFFICIAL, OWNER, ARCHITECT AND ENGINEER OF RECORD FOR THE PARTICULAR OPERATION. ALL SPECIAL INSPECTION REPORTS SHALL BE SUBMITTED TO THE BUILDING DEPARTMENT AND ENGINEER OF RECORD WITH THE PROJECT INFORMATION AND ADDRESS.

09/18/23 Page 10 of 75

	WIND / SEISMIC SHEAR FORCE CALCULATIONS: From ASCE 7-16 Wind & Seismic Loading Analysis																
		Ro	oof / Flo	or				Wall			Load	above				Loadin	ıg
Wall Line	Wind Force (psf)	Diaph. Weight	Wr, We truss trib (ft)	Area W (ft)	Area L (ft)	Wind Force (psf)	Wall DL (psf)	Wall ht (ft)	wall line dist (ft)	Upr. Fir Wall ht (ft)	Wind (#)	Seismic (#)	*C _s (Wp)	=	Wind Force (kips)	Seismic Force (kips)	Lateral Control
X1-2	9.6	55	3.5	60.0	20.0	15.1	19.0	10.8	60.0				0.05	=	3.44	2.37	Wind
X2-2	9.6	55	3.5	60.0	20.0	15.1	19.0	10.8	60.0				0.05	=	3.44	2.37	Wind
Y1-2	9.6	55	3.5	20.0	60.0	17.8	19.0	10.8	20.0				0.05	=	1.30	1.94	Seismic
Y2-2	9.6	55	3.5	20.0	60.0	17.8	19.0	10.8	20.0				0.05	=	1.30	1.94	Seismic
X1-1															3.23	2.46	Wind
X2-1	9.6	55 18	0.0	60.0	33.5	15.1 15.1	19.0 19.0	16.0 16.0	60.0	5.5	3.44	2.37	0.05	=	6.10	2.74	Wind
Y1-1	9.6	55	5.0	43.0	60.0	15.6	19.0	16.0	43.0	0	0	0	0.05		3.72	4.39	Seismic

15.6

17.2

19.0

8.0

16.0

16.0

43.0

24.0

60.0

24.0

43.0

24.0

9.6

0.0

Y2-1

55

18

5.0

0.0

0

1.94

0

5.5

0

1.30

0.05

0.17

4.07

3.35

Wind

09/18/23 Page 11 of 75

SHI	<u>EAR WAL</u>	<u>L CALCUL</u>	<u> ATIONS:</u>							
	X1-2	X2-2	Y1-2	Y2-2						
	Shear	Wall Forces	•		•					
Total length of wall	20.00 ft	20.00 ft	60.00 ft	60.00 ft						
Total length of shear wall L =	20.00 ft	20.00 ft	49.16 ft	33.50 ft						
Total length of full ht seg. $L_w =$	14.99 ft	9.00 ft	12.00 ft	12.75 ft						
height of shear wall $H = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	10.75 ft	8.00 ft	10.00 ft	11.50 ft						
Maximum opening height $H' =$	2.00 ft	8.00 ft	2.00 ft	10.00 ft						
Total force at top of wall $V_1 =$	3439 lbs	3439 lbs	1939 lbs	1939 lbs						
Self weight $W_{DL self} =$	204 plf	152 plf	190 plf	219 plf						
Applied dead load $W_{DL above} =$	60 plf	60 plf	60 plf	60 plf						
Prefered OSB thickness in	7/16	7/16	7/16	7/16						
Prefered Gyp thickness in	1/2	1/2	1/2	1/2						
Wall Connected to Concrete y/n =	N	N	N	Υ						
	Shear \	Wall Segmen	ts							
	4.83	3.00	4.00	8.75						
ļ	10.16	6.00	4.00	4.00						
i			4.00							
	· · · · · · · · · · · · · · · · · · ·			-						
Shear Transfer to Concrete										
T =	355 lbs	2867 lbs	Not Reg'd	Not Req'd						
	000 .00	2007 100		72 " O.C.						
Provide:				Code Min.						
Min # of 1/2 Anchor Bolts				(2) Min						
Load From Above	0.00	0.00	0.00	0.00						
Holdown		S3								
		esisting Syste	m		•					
Force Calculated	229.43	802.46	161.56	303.57						
i oree calculated	OSB	OSB	OSB	OSB						
Min Shear Wall Segment:	3.07 ft	2.29 ft	2.86 ft	3.29 ft						
Provide: Va=	SW1	SW4	SW1	SW1						
1 TOVIGE.	3111	2447	2441	0111						
Min Shear Wall Segment:										
Provide: Va=										
	aldina / NI=!!!	- Fuer:!:: - *	Maahur +		<u> </u>					
Blocking Unit Shear	cking / Nailir 172 plf	172 plf	32 plf	32 plf						
Blocking	NONE	NONE	NONE	NONE						
Nailing	T1	T1	See SCHED	See SCHED						
Haming			JCC JCHLD	JCC JCHLD	<u> </u>					
or 66 HJ 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Base Shear		0.00:	1					
% of full height segments %fh = L_w/L =	0.750	0.450	0.244	0.381						
% of maximum opening height %oh = H'/H =	0.186	1.000	0.200	0.870						
Shear cap adj factor SCAF = Unit base shear vbase $V_1/L_w =$	1.00 229 plf	0.48 382 plf	1.00 162 plf	0.50						
Effective unit base shear vreq=v _{base} /SCAF=	229 pir 229 plf	802 plf	162 plf	152 plf 304 plf						
Ovrtrn. mo. Ttl. length of wall OTM =	37.0 k-ft	9.2 k-ft	19.4 k-ft	44.5 k-ft						
					I					
Resist moment total L. of wall RM =		adjustment f		450.01.6	ı					
nesist moment total 2. or man	52.8 k-ft	1.0 k-ft	301.5 k-ft	156.0 k-ft						
r= C _o =	0.9415 1.1245	0.4500 0.4762	0.6175 1.4334	0.4140 0.5009						
		114/n/	4554							

09/18/23 Page 12 of 75

<u> </u>	<u>IEAR WAL</u>				•
	X1-1	X2-1	X2-1	Y1-1	Y2-1
	Shea	r Wall Forces			
Total length of wall	24.50 ft	43.00 ft	43.00 ft	60.00 ft	24.00 ft
Total length of shear wall	24.50 ft	14.42 ft	6.00 ft	60.00 ft	24.00 ft
Total length of full ht seg. $L_w =$		4.42 ft	6.00 ft	13.00 ft	24.00 ft
height of shear wall $H =$	3.13.10	16.00 ft	16.00 ft	16.00 ft	16.00 ft
Maximum opening height H' =		12.50 ft	0.00 ft	2.00 ft	0.00 ft
Total force at top of wall V_1	3232 lbs	3965 lbs	2135 lbs	4394 lbs	4075 lbs
Self weight W _{DL self} =		304 plf	304 plf	304 plf	304 plf
Applied dead load W _{DL above} =		72 plf	72 plf	60 plf	60 plf
Prefered OSB thickness ir	7/10	7/16	7/16	7/16	7/16
Prefered Gyp thickness ir	-/-	1/2	1/2	1/2	1/2
Wall Connected to Concrete y/n =	Υ	Υ	Υ	Υ	Υ
	Shear \	Wall Segment	:S		
	4.00	2.75	6.00	6.50	24.00
	4.00	1.67		6.50	
	4.00			_	
	Shear Tra	nsfer to Conc	rete		
T:		3500 lbs	5017 lbs	Not Req'd	99 lbs
1/2 Anchor Bolts @		3300 133	72 " O.C.	72 " O.C.	72 " O.C.
Provide:	Code Min.		Code Min.	Code Min.	Code Min.
Min # of 1/2 Anchor Bolt			(3) Min	(5) Min	(4) Min
Load From Above	. ,	0.00	0.00	0.00	0.00
		HD3	HD3		Perp. Wall
	Shear R	esisting Syste	m		
Force Calculated	269.36	896.96	355.80	338.02	169.78
Torce calculated	OSB	B.F.	OSB	OSB	OSB
Min Shear Wall Segment		1.33 ft	4.57 ft	4.57 ft	4.57 ft
Provide: Va		4400	SW1	SW1	SW1
i i ovide.	2441	4400	3141	3441	Gyp.
Min Shear Wall Segment					8.00 ft
Provide: Va:					SWC
					51.0
	ocking / Nailii			72 ما ل	170 alf
Blocking Unit Shear	132 plf	92 plf	50 plf	73 plf	170 plf
Blocking	NONE	NONE See SCHED	NONE See SCHED	NONE	NONE
Mailing	Soc SCHED		JEE JI HEI)	See SCHED	T1
Nailing	See SCHED		See Series		
	Unit	Base Shear			
% of full height segments $\%$ fh = L_w/L	Unit 0.490	Base Shear 0.307	1.000	0.217	1.000
% of full height segments %fh = L_w/L % of maximum opening height %oh = H'/H ?	Unit 0.490 0.219	0.307 0.781	1.000 0.000	0.125	0.000
% of full height segments %fh = L _w /L : % of maximum opening height %oh = H'/H : Shear cap adj factor SCAF :	Unit = 0.490 = 0.219 = 1.00	0.307 0.781 0.52	1.000 0.000 1.00	0.125 1.00	0.000 1.00
% of full height segments %fh = L_w/L : % of maximum opening height %oh = H'/H : Shear cap adj factor SCAF: Unit base shear vbase V_1/L_w :	Unit = 0.490 = 0.219 = 1.00 = 269 plf	0.307 0.781 0.52 897 plf	1.000 0.000 1.00 356 plf	0.125 1.00 338 plf	0.000 1.00 170 plf
% of full height segments %fh = L _w /L = % of maximum opening height %oh = H'/H = SCAF = Unit base shear vbase V ₁ /L _w = Effective unit base shear vreq=v _{base} /SCAF = % of the segments %fh = L _w /L = % of the segments %fh = L _w /	Unit = 0.490 = 0.219 = 1.00 = 269 plf = 269 plf	0.307 0.781 0.52 897 plf 1733 plf	1.000 0.000 1.00 356 plf 356 plf	0.125 1.00 338 plf 338 plf	0.000 1.00 170 plf 170 plf
% of full height segments %fh = L _w /L = % of maximum opening height %oh = H'/H = SCAF = Unit base shear vbase V ₁ /L _w = Effective unit base shear vreq=v _{base} /SCAF = % of the segments %fh = L _w /L = % of the segments %fh = L _w /	Unit = 0.490 = 0.219 = 1.00 = 269 plf = 269 plf = 29.5 k-ft	0.307 0.781 0.52 897 plf 1733 plf 24.0 k-ft	1.000 0.000 1.00 356 plf 356 plf 34.2 k-ft	0.125 1.00 338 plf	0.000 1.00 170 plf
% of full height segments %fh = L_w/L 6 of maximum opening height %oh = H'/H 5 Shear cap adj factor U 5 SCAF V 5 Unit base shear V 5 V V_1/L_w 6 Ovrtrn. mo. Ttl. length of wall V 0 OTM V	Unit = 0.490 = 0.219 = 1.00 = 269 plf = 269 plf = 29.5 k-ft Shear wall	0.307 0.781 0.52 897 plf 1733 plf 24.0 k-ft	1.000 0.000 1.00 356 plf 356 plf 34.2 k-ft	0.125 1.00 338 plf 338 plf 70.3 k-ft	0.000 1.00 170 plf 170 plf 65.2 k-ft
% of full height segments %fh = L _w /L = % of maximum opening height %oh = H'/H = SCAF = Unit base shear vbase V ₁ /L _w = Effective unit base shear vreq=v _{base} /SCAF = % of full height segments %fh = L _w /L = % of full height segments %fh =	Unit = 0.490 = 0.219 = 1.00 = 269 plf = 269 plf = 29.5 k-ft Shear wall 73.5 k-ft	0.307 0.781 0.52 897 plf 1733 plf 24.0 k-ft	1.000 0.000 1.00 356 plf 356 plf 34.2 k-ft	0.125 1.00 338 plf 338 plf	0.000 1.00 170 plf 170 plf

09/18/23 Page 13 of 75

Loads: BLC 1, Wind Load Envelope Only Solution KccX'GYWjcb'GYlg

	Šæà^	Ù@ ≱ ^	V^]^	Ö^∙ã}Æããc	Tæe∿¦ãæ¢	Ö^• ã} ÁÜ* ^•	OEÁÃ)Gá	OÁÇJ€ÉĞ €DÁÐ	ÈOÁÇ€ÊFÌ€DÁŽÁHÈ
F	Ô@¦å	I Ě ÝÍ Ĕ ØÙ	Ô[Ü^&ca)** ab	C Z Z X X X	V^]	GΕΪÍ	l FËÎÎ	ÎŒHUF
G	Y ^à	GÝÎ	Ó^æ{	Þ[}^	ÖØÐŠÁÁG	V^]	ÌĖ	FĚIÏ	G€EÏJÏ
Н	Ó^ǽ	I ÝFG	Ó^æ	Þ[}^	GØËFĒÒÁÖØÁÓæþæ) &^å	V^]	HJÈHÏ Í	l∰JÍ	ΙFÍÈÈÌΗ

>c]bhi7ccfX]bUhYg'UbX'HYa dYfUhi fYg

- 010	iir ccinjuuriig dun ma u ii dii mg			
	Šæà^	ÝÆká	ŸÆK	V^{] <i>Ãã</i> ⊘á
F	ÞF	€	€	€
G	ÞÌ	€	FI	€
Н	ÞF€	F₿G	€	€
1	ÞFÏ	FÐĠ	FI	€
ĺ	ÞÍ	€	G	€
Î	ÞÎ	€	I	€
Ϊ	ÞÏ	€	Î	€
ì	ÞÌŒ	€	ì	€
J	ÞJ	€	F€	€
F€	ÞF€Œ	€	FG	€
FF	ÞFF	FÐĠ	G	€
FG	ÞFG	FÐĠ		€
FH	ÞFH	FÐĠ	Î	€
FI	ÞFI	FÐĠ	Ì	€
FÍ	ÞFÍ	FÈG	F€	€
FÎ	ÞFÎ	FÐĠ	FG	€
FΪ	ÞFÏŒ	FI	€	€
FÌ	ÞFÌ	FÍ ÈIG	€	€
FJ	ÞFJ	FI	FI	€
G€	ÞŒ	FÍ ÈIG	FI	€
GF	ÞŒ	FI	G	€
GG	ÞŒ	FI		€
GH	₽GH	FI	Î	€
G	ÞG	FI	Ì	€
GÍ	ÞĠ	FI	F€	€
GÎ	ÞĜ	FI	FG	€
Ğ Ğ Ğ Ğ	₽Ğ	FÍ ÈG	G	€
	ÞĠ	FÍ ÈG		€
GJ	ÞGI	FÍ ÈIG	Î	€
H€	ÞH€	FÍ ÈIG	Ì	€
HF	ÞĦ	FÍ ÈG FÍ ÈG	F€	€
HG	ÞЮ	FÍ ÈIG	FG	€

>c]bh6ci bXUfm7cbX]h]cbg

	R[ā]oÁŠæà∧	ÝÆŽÐajá	ŸÆXEAjá	Ü[cæqā]}ŽİË-eDænåá
F	ÞF	Ü^æ \$ æ [}	Ü^æ & æ [}	
G	ÞFÌ		Ü^æ & æ [}	
Н	ÞF€		Ü^æ & æ [}	
	ÞFÏ Œ	Ü^æ \$ æ ī }	Ü^æ & æ 1 }	

09/18/23 Page 15 of 75

KccX'8 Yg][b'DUfUa YhYfg

	K O IGIL K												
	Šæà^	Ù@ ≱ ^	Š^}*c@Ž##ÈŠ	^Ëį čŽeá	Š^BjŽeá	^Ëa^} åÁq ⊞	^Ëa^} åÁà[ÈÈ	ÈSĘr̃c	SËĄ	ÔX	Ô١	Uˇલ	ŒQÁ,æ̂
F	TF	Ô@¦å	FI	G	G	ŠàĄ́́c							
G	TG	Ô@¦å	FI	G	G								
Н	TI	Y ^à	G∄ÏG			ŠàĄ́c							
1	Τĺ	Y ^à	FÈG			ŠàĄ́Č							
ĺ	ΤÎ	Y ^à	ŒÏÏG			ŠàĄ́č							
Î	ΤÏ	Y ^à	FÈG			ŠàĄ́Č							
Ï	ΤÌ	Y ^à	GËÏG			ŠàĄ́č							
ì	ΤJ	Y ^à	FÈG			ŠàĄ́Č							
J	TF€	Y ^à	ŒÏÏG			ŠàĄ́č							
F€	T FF	Y ^à	FÈG			ŠàĄ́Čč							
FF	T FG	Y ^à	GËÏG			ŠàĄ́Č							
FG	T FH	Y ^à	FÈG			ŠàĄ́Č							
FH	T FI	Y ^à	GËÏG			ŠàÁ, c ŠàÁ, c							
FL	T FÍ	Y ^à	FÈG			ŠàÁ, c ŠàÁ, c							
FÍ	T FÎ	Y ^à	Œ∄ÏG			ŠàĄ́́C							
FÎ	ΤFΪ	Ô@¦å	FI	G	G								
FΪ	T FÌ	Ô@¦å	FI	G	G								
FÌ	T FJ	Y ^à	GËÏG			ŠàĄ́́c							
FJ	TG€	Y ^à	FÈG			ŠàÆ, č							
G€	T GF	Y ^à	ŒÏÏG			ŠàĄ́r c							
GF	TŒ	Y ^à	FÈG			ŠàĄ́Č							
Œ	T GH	Y ^à	ŒÏÏG			ŠàĄ́ŕc							
GH	ΤG	Y ^à	FÈG			ŠàĄ́́c							
G G	ΤĠ	Y ^à	ŒÏÏG			ŠàĄ́ŕc							
GÍ	ΤĠ	Y ^à	FÈG			ŠàĄ́Č							
GÎ	ΤĠΪ	Y ^à	ŒÜÏG			ŠàĄ́́C							
Ġ G	ΤĠ	Y ^à	FÈG			ŠàĄ́Č							
GÌ	TGJ	Y ^à	ŒÏÏG			ŠàÁ, c ŠàÁ, c							
GJ	TH€	Y ^à	FÈG			ŠàĄ́́, č							
H€	THF	Y ^à	Œ <u></u> ÏG			ŠàÄřc							
HF	T HFŒ	Ó^æ{	FÍ ÈG	€	€	ŠàĄ́č							

>c]bh'@UXg'UbX'9 bZcfWYX'8]gd`UWYa Ybhg'f6 @' %. 'K]bX'@UXL

	F[ā]o^ÉSæà^	ŠÉÖÉT	Öã^&cã[}	Tæ*}ãc° å^ŽÇÊËdDÁQ;ÊæåDÁQE • âGĐÈÈ
F	ÞÌ	Š	Ý	ΙÈ

6 Ug]W@:UX'7 UgYg

	ÓŠÔÁÖ^∙&¦∄;₫{}	Ôæz^*[¦^	ÝÁÕ¦æçãcî	ŸÁÕ¦æçãcî	R[ã]c	Ú[ã]c	Öãrdãa ĭc^å
F	YāļåÁŠ[æå	ΥŠ			F		
G	Ö^æåÆŠ[æå	ÖŠ					F

9bj YcdYAUI Ja i a 'A Ya VYf GYWIJcb': cfWYg

	T^{ à^¦		OF¢ãa⇔Žžá	ŠĮ &Žcá	ŠÔ	Ù@æłŽá	ŠĮ &Žcá	ŠÔ	T[{^}cŽTËcá	ŠĮ &Žcá	ŠÔ
F	TF	{ æ¢	FÈUF	FŒÌT€I	FΪ	ÈHF	GÈEIG	FΪ	ÈΙΗ	GÈEIG	FΪ
G		{ a }	ЁÈН	€	FΪ	⊞EG	€	FΪ	⊞EGÎ	FFÈJÍ Ì	FΪ
Н	TG	{ æ¢	ΪÈÎJ	€	J	ÈEGH	IÈÈÌH	FΪ	ÈFF	IÈÈÌH	J

09/18/23 Page 16 of 75

9bj YcdYAUI Ja i a 'A Ya VYf GYWijcb': cfWkg fi cbhjbi YXŁ

90] 1	9DJ T CUTA UIJA TA A TA VTI GTWIJCD. CIVIIG II CDIJDI TAL												
	T^{ à^¦		OE¢ãa⇔Žáá	ŠĮ&Žæá	ŠÔ	Ù@æłŽá	Šį &Žcá	ŠÔ	T[{^}cŽİËcá	ŠĮ &Žcá	ŠÔ		
		{ ā	ÉÉÍ	FŒÌF€I	FΪ	⊞€ÎÍ	GÈEIG	J	ŒFÎ	FÈJÎ	J		
ĺ	TI	{ æ¢	ÈEÏ	€	FÎ	€	€	F	€	€	F		
Î		{ a	ËÈJF	€	FΪ	€	€	F	€	€	F		
Ï	ΤÍ	{ æ¢	FÈĠ	€	FΪ	€	€	F	€	€	F		
Ì		{ a	⊞aîì	€	F	€	€	F	€	€	F		
J	ΤÎ	{ æ¢	È€JF	€	FÎ	€	€	F	€	€	F		
F€		{ ā	ËÈFÍ	€	FΪ	€	€	F	€	€	F		
FF	ΤÏ	{ æ¢	F È GÏ H	€	FΪ	€	€	F	€	€	F		
FG		{ ā	EE Í	€	F	€	€	F	€	€	F		
FH	ΤÌ	{ æ¢	<u>—</u> È€JI	€	FÎ	€	€	F	€	€	F		
FI		{ a	ËÈH	€	FΪ	€	€	F	€	€	F		
FÍ	TJ	{ æ¢	FÉGÎ Ì	€	FΪ	€	€	F	€	€	F		
FÎ		{ a	EEE Í	€	F	€	€	F	€	€	F		
FΪ	TF€	{ æ¢	<u> </u>	€	FÎ	€	€	F	€	€	F		
FÌ	110	{ a	ËÈH	€	FΪ	€	€	F	€	€	F		
FJ	TFF	{ æ¢	FEG	€	FΪ	€	€	F	€	€	F		
G€		{ a	EEE Í	€	F	€	€	F	€	€	F		
GF	TFG	{ æ¢	<u> </u>	€	FÎ	€	€	F	€	€	F		
Œ	110	{ a	ËÈG	€	FΪ	€	€	F	€	€	F		
GH	T FH	{ æ¢	FEG G	€	FΪ	€	€	F	€	€	F		
G		{ a	<u> </u>	€	F	€	€	F	€	€	F		
GÍ	TFI	{ æ¢	<u></u>	€	FÎ	€	€	F	€	€	F		
Ĝ		{ ā	ËĐÀ	€	FΪ	€	€	F	€	€	F		
Ğ	T FÍ	{ æ¢	FÈH	€	FΪ	€	€	F	€	€	F		
Ĝ		{ a		€	F	€	€	F	€	€	F		
GJ	T FÎ		<u></u> EJÎ	€	FÎ	€	€	F	€	€	F		
H€	1 [{ æ¢	<u>EDÎ</u> Î	€	FÏ	€	€	F	€	€	F		
HF	T FÏ		GĚJÌ	FŒF€I	J	<u>E</u> EHH	F € EÎ H	J	ÈI	GE G	J		
HG	1 [{ æ¢ }	<u>Ē</u> ĐJÏ	€	FΪ	E F	€			FFÈÍÌ	J		
HH	T FÌ		<u> </u>	€	J	ÆG	IÈH		È€Ï	I Œ H	FΪ		
H	1 [{ æ¢	<u>⊞</u> GF	FŒF€I	J	EG H	GE G		<u> </u>	FÈJÎ	J		
HÍ	T FJ	{ æ¢		€	FÌ	€	€	F	€	€	F		
HÎ	I FJ	{ a	<u>EGE</u> EÎÎ	€	J	€	€	F	€	€	F		
HÏ	TG€		FĚ€J	€	J	€	€	F	€	€	F		
HÌ	1 6€	{ æ¢	<u></u>	€	FÌ	€	€	F	€	€	F		
HJ	T GF	{ æ¢		€	FÌ	€	€	F	€	€	F		
I€	<u> </u>	{ a	<u>III</u> IIII III	€	J	€	€	F	€	€	F		
I F	TŒ	1 9	F EH FJ	€		€	€	F	€	€	F		
IG	1 00	{ æ¢	<u>r⊞ru</u> È€HU	€	J FÌ	€	€	F	€	€	F		
IH	T GH			€	FÌ	€	€	F	€	€	F		
111	1 G1	(a ()	開	€	Г	€	€	F	€	€	F		
11	TG	{ a }	FÈHİ	€	J	€	€	<u> </u>	€	€	F		
1 î	1 G	{ æ¢			FÌ	€		F	€	€	F		
11	TGÍ	{ a }	<u>E</u> EHJ EE€ÍÎ	€	FÌ	€	€	F	€	€	F		
11	ı G	{ æ¢	<u></u>	€		€	€		€	€	F		
11	T GÎ	{ a		€	J	€	€	F F	€	€	F		
l J í e	ı G	{ æ¢	FÈHÍ		J Eì			F					
Í€	Τα̈́	{ ā	<u>E</u> HJ	€	FÌ	€	€		€	€	F		
ÍF	TGÏ	{ æ¢		€	FÌ	€	€	F	€	€	F		
ÍG	T 🗘	{ ā	<u> </u>	€	J	€	€	F	€	€	F		
ÍΗ	TĠ	{ æ¢	FÈHÍ G	€	J	€	€	F	€	€	F		
11	T 01	{ a	<u>È</u> EHJ	€	FÌ	€	€	<u>F</u>	€	€	F		
<u> [[[] </u>	TGJ	{æ¢	ÉÉÍ	€	FÌ	€	€	F	€	€	F		

09/18/23 Page 17 of 75

9bj Ycd Y'A Ul Ja i a 'A Ya VYf GYWljcb': cfWlg fl cbljbi YXL

	T^{ à^¦		OE¢ãa⇔Žá	ŠĮ &Žcá	ŠÔ	Ù@æłŽá	ŠĮ &Žcá	ŠÔ	T[{^};oŽ,Ë;cá	Šį &Žcá	ŠÔ
ĺÎ		{ a	ËÐFÌ	€	J	€	€	F	€	€	F
ÍΪ	TH€	{ æ¢	FĖHÌ	€	J	€	€	F	€	€	F
Ĥ		{ a	ÈF	€	FÌ	€	€	F	€	€	F
ĺJ	THF	{ æ¢	⊞€ÎI	€	FÌ	€	€	F	€	€	F
΀		{ a	ËŒĞ	€	J	€	€	F	€	€	F
ÎF	T HFŒ	{ æ¢	GĒÍÎ	€	FΪ	FÈĖ	FIÈ€JÎ	J	HÈHGJ	FHÈH	J
ÎG		{ a	⊞€€I	€	F	⊞ìí	FHÈH	J	ËŒÎ	FÈJ	FΪ

9bj Ycd Y'A Ya VYf 9bX'F YUWJcbg

U NJ	SOJ I GO I A IO VII SOAT TOVIJEOG										
	T^{ à^¦	T^{ à^⊞	È	OF¢ãa⇔Žá	ŠÔ	Ù@ælŽá	ŠÔ	T[{^}oŽËcá	šô		
F	TF	Q	{ æ¢	ÈG€I	FÎ	€	F	€	F		
G			{ ā	ЁÈН	FΪ	Œ G	FΪ	€	F		
Н		R	{ æ¢	FÈUF	FΪ	Ì€€I	F	€	F		
1			{ ā	⊞GFF	F	ËŒFH	FΪ	€	F		
ĺ	TG	Q	{ æ¢	ΪÈÎJ	J	È€ÈÌ	J	€	F		
Î			{ a }	È	FÌ	€	F	€	F		
Ï		R	{ æ¢	ĚΙ	FÎ	È€H	F	€	F		
Ì			{ ā	⊞GÎÍ	FΪ	ËE€G	FΪ	€	F		
J	TI	Q	{ æ¢	ÈEÏ	FÎ	€	F	€	F		
F€			{ ā	ËÈJF	FΪ	€	F	€	F		
FF		R	{æ¢	ÈEÏ	FÎ	€	F	€	F		
FG			{ ā	ËÈJF	FΪ	€	F	€	F		
FH	Τĺ	Q	{æ¢	FĖĞÏ	FΪ	€	F	€	F		
FI			{ ā	⊞êîì	F	€	F	€	F		
FÍ		R	{ æ¢	FÈĞÏ	FΪ	€	F	€	F		
FÎ			{ ā	⊞eîì	F	€	F	€	F		
FΪ	ΤÎ	Q	{æ¢	È€JF	FÎ	€	F	€	F		
FÌ			{ ā	ËÈFÍ	FΪ	€	F	€	F		
FJ		R	{ æ¢	È€JF	FÎ	€	F	€	F		
G€			{ ā	ËÈFÍ	FΪ	€	F	€	F		
GF	ΤÏ	Q	{ æ¢	F È GÏ H	FΪ	€	F	€	F		
GG			{ a }	⊞€ÎÍ	F	€	F	€	F		
GH		R	{ æ¢	F È ĠÏ H	FΪ	€	F	€	F		
G			{ ā	⊞€ÎÍ	F	€	F	€	F		
GÍ	ΤÌ	Q	{ æ¢	Ì€JI	FÎ	€	F	€	F		
Ĝ			{ a }	ËÈH	FΪ	€	F	€	F		
GÏ		R	{ æ¢	Ì€JI	FÎ	€	F	€	F		
GÌ			{ a }	ËÈH	FΪ	€	F	€	F		
GJ	TJ	Q	{ æ¢	F É GÎ Ì	FΪ	€	F	€	F		
H€			{ ā	⊞eî í	F	€	F	€	F		
HF		R	{ æ¢	F É GÎ Ì	FΪ	€	F	€	F		
HG			{ ā }	Ë€ÎÍ	F	€	F	€	F		
HH	T F€	Q	{ æ¢	l€JI	FÎ	€	F	€	F		
Н			{ a }	ËÈH	FΪ	€	F	€	F		
HÍ		R	{ æ¢	l€JI	FÎ	€	F	€	F		
HÎ			{ ā	ËÈH	FΪ	€	F	€	F		
ΗÏ	T FF	Q	{ æ¢	FEG	FΪ	€	F	€	F		
HÌ			{ ā	⊞êÍ	F	€	F	€	F		
HJ		R	{ æ¢	FÈ	FΪ	€	F	€	F		
I€			{ ā	⊞€ÎÍ	F	€	F	€	F		

09/18/23 Page 18 of 75

9bj YcdYA Ya VYf 9bXF YUMJcbgfl7cbhjbi YXL

IF		T^{ à^¦	T^{ à^⊞	:	O≣¢ãa†Žá	ŠÔ	Ù@ælŽá	ŠÔ	T[{^};cŽ,Ë;cá	ŠÔ
I	1 F		Q			FÎ				
I	IG				ËÈG	FΪ	€	F	€	F
	ΙH		R	{ æ¢	ÆIJ	FÎ	€	F	€	F
1	11			{ a }	ËÈĠ		€	F		F
	ΙÍ	T FH	Q	{ æ¢	FÈGI G	FΪ	€	F	€	F
1	ΙÎ			{ a }	⊞âí		€	F	€	F
TF Q (30) (31) F € F	ΙΪ		R	{ æ¢		FΪ	€	F	€	F
TF Q (30) (31) F € F	ΙÌ			{ a }		F	€	F	€	F
F	IJ	T FI	Q	{ æ¢	Ì€JI		€	F	€	
F	Í€			{ a }			€	F	€	
İH TFİ Q {aaz FĒH Fİ € F € F İİ R {aaz FĒH Fİ € F € F İİ R {aaz FĒLI Fİ € F € F İİ TFİ Q {aaz FĒLI Fİ € F € F İİ TFİ Q {aaz FĒLI Fİ € F € F İİ TFİ Q {aaz FĒLI Fİ € F € F İİ R {aaz FĒLI Fİ € F € F İİ R {aaz GĒLI Fİ € F € F İİ R {aaz GĒLI Fİ ŒELI J € F İH R Raaz GĒLI J ŒELI J €	ĺF		R	{ æ¢	ÌŒJI	FÎ	€		€	
İH TFİ Q {aaz FĒH Fİ € F € F İİ R {aaz FĒH Fİ € F € F İİ R {aaz FĒLI Fİ € F € F İİ TFİ Q {aaz FĒLI Fİ € F € F İİ TFİ Q {aaz FĒLI Fİ € F € F İİ TFİ Q {aaz FĒLI Fİ € F € F İİ R {aaz FĒLI Fİ € F € F İİ R {aaz GĒLI Fİ € F € F İİ R {aaz GĒLI Fİ ŒELI J € F İH R Raaz GĒLI J ŒELI J €	ÍG			{ a }	ËÐÀ		€	F	€	
	ĺΗ	T FÍ	Q	{ æ¢	FÈH		€		€	
TF Q { asc	ÍI			{ a }			€	F		
TF Q { asc	ÍÍ		R		FÈH		€		€	
TF Q { asc	ÍÎ			{ a }			€	F	€	
Í J R {aac ÉEJÎ FÎ € F € F Î € TFÎ Q (aac ÊEJÎ FÎ € F € F Î F TFÎ Q (aac ÊEJÎ FÎ € F € F Î H R (aac GÊJÎ J Œ F € F F € F F € F Î € F Î € F Î € F Î Î ÊEGH F Î € F F Î <td>ÍΪ</td> <td>T FÎ</td> <td>Q</td> <td>{ æ¢</td> <td>Ì€JÎ</td> <td></td> <td>€</td> <td></td> <td>€</td> <td>F</td>	ÍΪ	T FÎ	Q	{ æ¢	Ì€JÎ		€		€	F
Î € (a) ÎFBÎÎ F € F	l l			{ a }	ËÐÎÏ		€	F		F
ÎF TFÏ Q {ag ÉLJÎ FÎ € FÎ € F ÎG 4ag ÊÛJÎ J ÊÊÊF J € F ÎH R {ag ÊÛJÎ J ÊÊÊH FÎ € F ÎÎ TFÎ Q {ag ÎÊHH J ÊÊEJ J € F ÎÎ TFÎ Q {ag ÊÊÊÎ FÎ € FÎ € F ÎÎ TFÎ Q Ag ÊÊÊÎ FÎ € F € F ÎÎ TFJ Q Ag ÊÊÊÎ FÎ € F € F ÎÎ TFJ Q Ag ÊÊÊÎ FÎ € F € F ÎÎ TFJ Q Ag ÊÊÊÎ FÎ € F € F ÎĞ Ag ÊÛÊÊÎ FÎ € F			R	{ æ¢		FÎ	€		€	
ÎG { â ÎÎ Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î				{ a }						
ÎH R { 38¢ GÉ J) J EEEH F) € F ÎI TFÎ Q { 38¢ Î EHH J EEEG J € F € F F F € F F F € F F F € F F F € F F F € F F F	ÎF	T FÏ	Q	{ æ¢	ÈJÌ		€	FÌ	€	
ÎI {a} ÈHÎI FÌ ÈEGI J € F ÎÎ TFÌ Q {aac ÌÈHH J ÈE€J J € F ÎÎ R {aac ÈÜÎ FÌ € FÎ € F ÎÎ R {aac ÊÜÎ FÌ ÊE€G FÎ € F ÎÎ TFJ Q {aac ÊÜÎ FÌ € F € F ÎÎ TFJ Q {aac ÊÜÎ FÌ € F € F ÎÎ TFJ Q {aac ÊÜÎ FÌ € F € F ÎÎ TFJ Q Aac ÊÜÎ FÌ € F € F ÎÎ TOS Q Aac FÊE J € F € F ÎÎ TOS Q Aac ÊÜÎ FÎ €	ÎG			{ a }	ËΒ̀JΪ	FΪ				F
ÎÍ TFÌ Q {asc Ì ÈHH J ÈEEJ J € F ÎÎ R {asc ÊEÎÎ FÌ € FÎ € F ÎÎ R {asc ÊEÎÎ FÌ ÊEEG FÎ € F ÎÎ TFJ Q {asc ÊEÎÎ FÎ € F € F ÎJ TFJ Q {asc ÊEÎÎ J € F € F ÎG TFJ Q {asc ÊEÎÎ J € F € F ÎG TOS Q {asc FÊÊÛ J € F € F ÎÎ TOS Q {asc FÊÊÛ J € F € F ÎÎ R {asc FÊÊÛ J € F € F ÎÎ R ÎÎ ÎÎ ÎÎ ÎÎ	ÎН		R	{ æ¢	O L ĚJÌ	J		FÌ	€	
ÎÎ {a} ÎÊÎ FÎ € FÎ € F ÎÎ R {ac ÎEÎÎ FÎ ÎEÊEG FÎ € F ÎÎ TFJ Q {ac ÎEÎÎ FÎ € F € F ÎJ TFJ Q {ac ÎEÎÎ J € F € F ÎF R {ac ÎEÎÎ J € F € F ÎF R {ac ÎEÎÎ J € F € F ÎG TO€ Q {ac FÎÊEJ J € F € F ÎI TO€ Q {ac FÎÊEJ J € F € F ÎÎ R {ac ÎÊÊÎ F € F € F ÎÎ TOF Q Ac ÎÊÊÎ F € F € F ÎÎ TOF Q Ac ÎÊÊÎ F € F € <td></td> <td></td> <td></td> <td>{ a}</td> <td>ÈĤÌ</td> <td>FÌ</td> <td></td> <td>J</td> <td></td> <td>F</td>				{ a }	ÈĤÌ	FÌ		J		F
ÎÎ {a} ÎÊÎ FÌ € FÌ € F ÎÎ R {ac ÎÊÊÎ FÌ ÎÊÊÊG FÌ € F ÎÎ TFJ Q {ac ÎÊÊÎ FÌ € F € F ÎJ TFJ Q {ac ÎÊÊÎ J € F € F ÎJ TFJ Q {ac ÎÊÊÎ J € F € F ÎG R {ac ÎÊÊÎ J € F € F ÎH TO€ Q {ac FÎÊÊÎ J € F € F ÎI R {ac FÎÊÊÎ J € F € F ÎÎ R {ac ÎÊÊÎ F € F € F ÎÎ TOF Q {ac ÎÊÊÎ F € F € F ÎÎ TOF Q [Ac ÎÊÊÎÎ F € F €	ÎÍ	T FÌ	Q		ÌÈH⊟H	J	È€J	J	€	F
ÎJ TFJ Q {ast EEEÎÎ FÌ € F € F ÎE R {ast EEEÎÎ J € F € F ÎF R {ast EEÊÎÎ J € F € F ÎH TG€ Q {ast FÊÊÛ J € F € F ÎÎ R {ast FÊÊÛ J € F € F ÎÎ R {ast FÊÊÛ J € F € F ÎÎ R {ast FÊÊÛ J € F € F ÎÎ R {ast FÊÊÛ J € F € F ÎÎ TGF Q {ast EÊÊÎÎ FÎ € F € F ÎÎ TGF Q {ast EÊÊÎÎ FÎ € F € F ÎÎ R {ast EÊÊÎÎ FÎ € F €				{ a }		FÌ		FÌ	€	F
ÎJ TFJ Q {ast EEEÎÎ FÌ € F € F ÎE R {ast EEEÎÎ J € F € F ÎF R {ast EEÊÎÎ J € F € F ÎH TG€ Q {ast FÊÊÛ J € F € F ÎÎ R {ast FÊÊÛ J € F € F ÎÎ R {ast FÊÊÛ J € F € F ÎÎ R {ast FÊÊÛ J € F € F ÎÎ R {ast FÊÊÛ J € F € F ÎÎ TGF Q {ast EÊÊÎÎ FÎ € F € F ÎÎ TGF Q {ast EÊÊÎÎ FÎ € F € F ÎÎ R {ast EÊÊÎÎ FÎ € F €			R	{ æ¢	EEE Ì	FÌ		FÌ	€	F
€ € F				{ a	⊞G F				€	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		T FJ	Q			FÌ	€		€	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				{ a	ËGÆÎÎ		€			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			R				€		€	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				{ a }	ËGÆÎÎ	J	€			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TŒ	Q				€		€	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				{ a }		FÌ	€			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			R			J	€		€	
IÌ {a} ESEGJ J € F € F IJ R {agc EEGÎ FÌ € F € F Ì € T CG Q {agc FEHFJ J € F € F Ì G {aj ÈEHJ FÌ € F € F Ì H R {agc FEHFJ J € F € F					Œ		€		€	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		T GF	Q		\	FÌ				
Î € { â} ESEGU J € F € F Î F T GG Q { æ¢ FÈHFJ J € F € F Î G { â} EEHJ FÎ € F € F Î H R { æ¢ FÈHFJ J € F € F				{ a }						
Ì F T CG Q { agr FÈHFJ J € F € F Ì G { agr FÈHFJ F € F € F Ì H R { agr FÈHFJ J € F € F			R							
ÌG {3 ÈEHJ FÌ € F € F ÌH R {æ¢ FÈHFJ J € F € F	_			{ a						
ÌH R {æ¢ FÈFJ J € F € F		T GG	Q							
	_			{ a		FÍ				
	ĮΗ		R			J	€		€	
(4)	ÌI			{ ā	<u>j</u> €HJ	FÌ	€	F	€	F
ÌÍ TGH Q {æ¢ ⊞dí Fì € F € F	Įį	T GH	Q				€			
ÌÎ	Į į			{ a }						
<u> </u>			R				€			
ÌÌ {ā ËÈJ J € F € F	_									
ÌJ TG Q {æ¢ FÈHÍ J € F € F		TG	Q							
J€ { ā} BĒHJ FÌ € F € F										
JF R {æ¢ FÈHÍÏ J € F € F			R							
JG				{ a }	ŒHJ	FI	. €	F		

09/18/23 Page 19 of 75

9bj Ycd YA Ya VYf 9bX F YUMJcbg fl7cbhjbi YXL

	T^{ à^¦	T^{ à^篚	:	OE¢ãețŽá	ŠÔ	Ù@ælŽá	ŠÔ	T[{^}cŽİËcá	šô
JH	ΤĠ	Q	{ æ¢	⊞eíî	FÌ	€	F	€	F
JI			{ ā	ËÈIÎ	J	€	F	€	F
JÍ		R	{ æ¢	ËEÉÎÎ	FÌ	€	F	€	F
JÎ			{ ā	ËÈIÎ	J	€	F	€	F
JΪ	ΤĠ	Q	{ æ¢	FÈHÍ	J	€	F	€	F
JÌ			{ a }	È€HJ	FÌ	€	F	€	F
JJ		R	{ æ¢	FÈH Í	J	€	F	€	F
F€€			{ a }	È€HJ	FÌ	€	F	€	F
F€F	ΤĠΪ	Q	{ æ¢	⊞€ÍÏ	FÌ	€	F	€	F
F€G			{ a }	ËÈÍ	J	€	F	€	F
F€H		R	{ æ¢	ËEÉÏ	FÌ	€	F	€	F
F€			{ a }	ËÈÍ	J	€	F	€	F
F€Í	ΤĠ	Q	{ æ¢	FÈHÍ G	J	€	F	€	F
F€Î			{ a }	È€HJ	FÌ	€	F	€	F
F € Ï		R	{ æ¢	FÈHÍ G	J	€	F	€	F
F€Ì			{ a }	È€HJ	FÌ	€	F	€	F
F€J	TGI	Q	{ æ¢	⊞eí í	FÌ	€	F	€	F
FF€			{ a }	ËÐFÌ	J	€	F	€	F
FFF		R	{ æ¢	⊞€Í	FÌ	€	F	€	F
FFG			{ a	ËĐÀ	J	€	F	€	F
FFH	TH€	Q	{ æ¢	F <u>Ě</u> H Ì	J	€	F	€	F
FFI			{ a	ÈEIF	FÌ	€	F	€	F
FFÍ		R	{ æ¢	F <u></u> Hì	J	€	F	€	F
FFÎ			{ a	È€IF	FÌ	€	F	€	F
FFÏ	THF	Q	{ æ¢	⊞€ÎI	FÌ	€	F	€	F
FFÌ			{ a	ËGÆĞ	J	€	F	€	F
FFJ		R	{ æ¢	EEÎ I	FÌ	€	F	€	F
FŒ			{ a }	ËGÈ€Ğ	J	€	F	€	F
FŒ	T HFŒ	Q	{ æ¢	GÊ Í Î	FΪ	FÈUÍ	FΪ	€	F
FŒ			{ a }	ËE€I	F	li g-f	F	€	F
FGH		R	{ æ¢	FÈ	J	FËF	J	€	F
FG			{ a }	ÈEIG	FÌ	ÈĠ	FÌ	€	F

9bj YcdYKccX7cXY7\YWg

	T^{ à^¦	Ù@a ∮ ^	Ô[å^ÆÔ@^&\	ŠĮ &ŽĖ	ÔĚ	Ù@ælĤ	Ěš jži	ÔŽĬ	Ø8ØÄ 🛱		ão∕à QÃX È	ÌÈØÇÆŽ	ËÜÓ	ÔŠ	ÔÚ	Ò~}
F	TF	I Ě ÝÍ 🖮		FÈ JÎ	FΪ	È€FÎ	€	FΪ	FÈ€	ĔÍÎ	FÈJI		3 Î Ë Í Í	ÌJĺ	ΗÍĖ	HÌË
G	TG	I Ě ÝÍ 🖮	—	€	٦	È€FI	CÈEI G	J	FÈ€	ËÍÎ	FÈJI		3 ÎËÍÍ	ÌJĺ	ΗÍĠ	HÊÈ
Н	TI	GÝÎ	ÈΠ	€	FΪ	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	ÈÀÌ	JÈ€FÌ	ΪÍĠ	Ì	HÌË
- 1	Τĺ	GÝÎ	ÈF€G	€	FΪ	È€€€	€	FÌ	FĚF	FÈÌ Î	FÈÍÎ	ÈÀÌ	ÏĚ€Í	ÙJF	ĒΉ	HÊÈ
ĺ	ΤÎ	GÝÎ	ĚÌÎ	€	FΪ	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	ÈÀÌ	JÈ€FÌ	ΪÍĠ	Ì	HÌË
Î	ΤÏ	GÝÎ	ÈF€G	€	FΪ	È€€€	€	FÌ	FĚF	FÈÌ Î	FÈÍÎ	ÈÀÌ	ÏĚ€Í	ÙJF	ĒΉ	HÊÈ
Ï	ΤÌ	GÝÎ	ΕÌJ	€	FΪ	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	ÈÀÌ	JÈ€FÌ	ΪÍĠ	ÈĤÌ	HÌË
Ì	TJ	GÝÎ	ÈF€G	€	FΪ	È€€€	€	FÌ	FĚF	FÈÌ Î	FÈÍÎ	ÈÀÌ	ÏĚ€Í	ÙJF	ĒΉ	HÊÈ
J	TF€	GÝÎ	Èìì	€	FΪ	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	ÈÀÌ	JÈ€FÌ	ΪÍĠ	ĤÌ	HÌË
F€	TFF	GÝÎ	ÈEH	€	FΪ	È€€€	€	FÌ	FĚF	FÈÌ Î	FÈÍÎ	ÈÀÌ	ÏĚ€Í	₿JF	ĒΉ	HÊÈ
FF	TFG	GÝÎ	Èìì	€	FΪ	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	ÈÀÌ	JÈ€FÌ	ΪÍĠ	Ì	HÌË
FG	TFH	GÝÎ	È€€	€	FΪ	È€€€	€	FÌ	FĚF	FÈÌ Î	FÈÍÎ	ÈÀÌ	ÏĚ€Í	₿JF	ĒΉ	HÊÈ
FH	TFI	GÝÎ	ÈIJΪ	€	FΪ	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	ÈÀÌ	JÈ€FÌ	ΪÍĠ	ÈĤÌ	HÌË
FI	T FÍ	GÝÎ	ÈFÍ	€	FΪ	È€€€	€	FÌ	FĚF	FÈÌ Î	FÈÍÎ	ÈÀÌ	ÏĚ€Í	ÙJF	ĒΗÍ	HÊÈ
FÍ	TFÎ	GÝÎ	ÈG€G	€	FΪ	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	ÈÀÌ	JÈ€FÌ	ÈÌΪ	ÈĤÌ	HÌË

09/18/23 Page 20 of 75

9bj YcdYKccX7cXY7\YWgffrcbffbi YXŁ

	T^{ à^¦	Ù@a}^	Ô[å^ÁÔ@^&\	Šį &žĖ	ÔĚ	Ù@æB	Ěš ŽĚ	ÔĚ	Ø&ØX 🖽	200 AX •a	ãØàOÃXÈÈ	ÉØÇÆÄ È	ÈÜÓ	ÔŠ	ÔÚ	Ò~}
FÎ	ΤFΪ	IĚÝÍÈ	ш с	FÈ JÎ	FΪ	È€FÎ	€	J	FÈ€	ĔÍÎ	FÈJI	Ē	ÎĖÍÍ	ÌJÍ	ΗÍŒ	HÌË
ΕÏ	TFÌ	IĚÝÍ 🛗	ÈH€Í	€	J	È€FI	ŒEIG	J	FÈ€	ĔÍÎ	FÈJI	Ē	ÎËÍÍ	ÌJÍ	ΗÍŒ	HÊÈ
FÌ	TFJ	GÝÎ	ÈFH	€	J	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	Ē	JÈEFÌ	ΪÍĠ	ÈĤÌ	HÌË
FJ	TG€	GÝÎ	ÈŒ	€	J	È€€€	€	FÌ	FĚF	<u>FÈÌÎ</u>	FÈÍÎ	Œ	ÏĚ€Í	ÙJF	ĒΗ	HÊÈ
G€	TGF	GÝÎ	ÌĐ€Ì	€	J	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈTÏ	Œ	JÈ€FÌ	ÏÍĠ	ÈĤÌ	HÌË
GF	TGG	GÝÎ	È€Î	€	J	È€€€	€	FÌ	FĚF	<u>FÈÌÎ</u>	FÈÍÎ	Œ	ÏĚ€Í	ÙJF	ĒΗ	HÊÈ
GG	TGH	GÝÎ	ÈJJ	€	J	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	É	JÈ€FÌ	ÏÍĠ	ÈĤÌ	HÌË
GH	TG	GÝÎ	È€J	€	J	È€€€	€	FÌ	FĚF	<u>FÈÌÎ</u>	FÈÍÎ	Œ	ÏĚ€Í	ÙJF	ĒΗ	HÊÈ
G	ΤŒ	GÝÎ	È€€	€	J	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	É	JÈ€FÌ	ÏÍĠ	ÈĤÌ	HÌË
GÍ	ΤĠÎ	GÝÎ	È€Ì	€	J	È€€€	€	FÌ	FĚF	<u>FÈÌÎ</u>	FÈÍÎ	Œ	ÏĚ€Í	ÙJF	ĒΗ	HÊÈ
Ĝ	ΤĠΪ	GÝÎ	È€€	€	J	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	Œ	JÈ€FÌ	ΪÍĠ	ÈĤÌ	HÌË
GÏ	ΤĠ	GÝÎ	È€J	€	J	È€€€	€	FÌ	FĚF	<u>FÈÌÎ</u>	FÈÍÎ	Œ	ÏĚ€Í	ÙJF	ĒΗ	HÊÈ
GÌ	TGJ	GÝÎ	ÈIJΪ	€	J	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	Œ Œ	JÈ€FÌ	ÏÍĠ	ΕĤÌ	HÌË
GJ	TH€	GÝÎ	È€Ì	€	J	È€€€	€	FÌ	FĚF	FÈÌÎ	FÈÍÎ	Œ Œ	ÏĚ€Í	ÙJF	ĒΉ	HÊÈ
H€	THF	GÝÎ	È€Ì	€	J	È€€€	€	FÌ	ÈÏÍ	FÈÌ	FÈIÏ	È	JÈ€FÌ	ÏÍĠ	ÈĤÌ	HÈË
HF	T HFŒ	I ÝFG	ÈΙJ	FHÈH	J	ÈÎG	FIÈEÈÈ	ÈJ	GĚÎ	FΕ̈́Î	HÊIÎ	ÈG	FFÈJÏ	ÌÉ	F	HÈËH

09/18/23 Page 21 of 75

MEMBER REPORT

Level, 2X6 OUTLOOKERS 1 piece(s) 2 x 6 DF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1212 @ 1' 8 1/4"	1406 (1.50")	Passed (86%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	526 @ 1' 2"	1139	Passed (46%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	-731 @ 1' 8 1/4"	975	Passed (75%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.099 @ 4' 3"	0.256	Passed (2L/618)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.110 @ 4' 3"	0.342	Passed (2L/558)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- . Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Right cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.
- · Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- -344 lbs uplift at support located at 1 1/2". Strapping or other restraint may be required.
- · Applicable calculations are based on NDS.

	В	Bearing Length			to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Hanger on 5 1/2" DF beam	1.50"	Hanger ¹	1.50"	-27	-317	-344	See note 1
2 - Stud wall - DF	1.50"	1.50"	1.50"	123	1089	1212	Blocking

- · Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ullet 1 See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 2" o/c	
Bottom Edge (Lu)	4' 2" o/c	

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-T	ie					
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LU26	1.50"	N/A	6-10dx1.5	4-10dx1.5	

[•] Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 4' 3"	16"	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Trevor Steelsmitt09/18/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com		

Level, RB1 1 piece(s) 6 3/4" x 16 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	15128 @ 14' 8 5/8"	15820 (3.75")	Passed (96%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	8896 @ 13' 2 1/4"	22628	Passed (39%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	37830 @ 7' 3 13/16"	69003	Passed (55%)	1.15	1.0 D + 1.0 S (Alt Spans)
Neg Moment (Ft-Ibs)	-5251 @ 14' 8 5/8"	54301	Passed (10%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.278 @ 7' 4 15/16"	0.727	Passed (L/627)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.314 @ 7' 4 7/8"	0.969	Passed (L/556)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 0.98 that was calculated using length L = 14' 3 1/8".
- Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 3' 1 11/16".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer
- Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.75"	3.75"	2.58"	1268	9623	10891	Blocking
2 - Stud wall - DF	3.75"	3.75"	3.59"	1787	13341	15128	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	17' 5" o/c	
Bottom Edge (Lu)	17' 5" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 17' 4 1/2"	N/A	27.1		
1 - Uniform (PSF)	0 to 17' 4 1/2" (Front)	8' 9"	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Trevor Steelsmitt09/18/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com	

Level, RB2 1 piece(s) 6 3/4" x 15" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	10618 @ 3 3/4"	10618 (2.42")	Passed (100%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	8824 @ 1' 6 3/4"	20571	Passed (43%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	42727 @ 8' 10 3/4"	56006	Passed (76%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.691 @ 9' 6 1/8"	0.940	Passed (L/327)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.789 @ 9' 6 3/16"	1.253	Passed (L/286)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

. Deflection criteria: LL (L/240) and TL (L/180).

IFORTEWEB®

- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 0.96 that was calculated using length L = 18' 9 1/2".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Hanger on 15" DF beam	3.75"	Hanger ¹	2.42"	1335	9742	11077	See note 1
2 - Stud wall - DF	3.75"	3.75"	1.78"	977	6540	7517	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	19' o/c	
Bottom Edge (Lu)	19' o/c	

[•]Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HGUS6.88/12	4.00"	N/A	56-10d	20-10d	

[•] Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	3 3/4" to 19' 3 1/2"	N/A	24.6		
1 - Tapered (PSF)	0 to 19' 3 1/2" (Front)	8' 9" to 2' 6"	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Trevor Steelsmitt09/18/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com	

Level, Roof: Joist 2 piece(s) 2 x 12 DF No.2 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1987 @ 14' 11 1/2"	2813 (1.50")	Passed (71%)		1.0 D + 1.0 S (Alt Spans)
Shear (lbs)	1756 @ 3' 10 11/16"	4658	Passed (38%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	5908 @ 9' 1/8"	6277	Passed (94%)	1.15	1.0 D + 1.0 S (Alt Spans)
Live Load Defl. (in)	0.251 @ 8' 10 3/4"	0.614	Passed (L/587)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.278 @ 8' 10 13/16"	0.818	Passed (L/530)		1.0 D + 1.0 S (Alt Spans)

Member Length : 15' 1 1/16"

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 1/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Beveled Plate - DF	5.50"	5.50"	1.62"	312	2744	3057	Blocking
2 - Hanger on 11 1/4" DF beam	5.50"	Hanger ¹	1.50"	214	1926	2140	See note 1

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 5" o/c	
Bottom Edge (Lu)	15' o/c	

[•]Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
2 - Face Mount Hanger	LSSR210-2Z	1.88"	N/A	22-16dx2.5	18-16dx2.5		

[•] Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead (0.90)	Snow (1.15)	Comments
	` ,	, ,	, ,		
1 - Uniform (PSF)	0 to 15' 5"	24"	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Trevor Steelsmitt09/18/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com		

Level, RB3 2 piece(s) 2 x 12 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1476 @ 17' 1 3/4"	2813 (1.50")	Passed (52%)		1.0 D + 1.0 S (Alt Spans)
Shear (lbs)	1360 @ 4' 3"	4658	Passed (29%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	5013 @ 10' 4 1/4"	5458	Passed (92%)	1.15	1.0 D + 1.0 S (Alt Spans)
Live Load Defl. (in)	0.266 @ 10' 2 9/16"	0.699	Passed (L/630)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.306 @ 10' 2 11/16"	0.933	Passed (L/549)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.75"	3.75"	1.50"	313	1970	2283	Blocking
2 - Hanger on 11 1/4" DF beam	3.75"	Hanger ¹	1.50"	204	1337	1541	See note 1

- · Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' o/c	
Bottom Edge (Lu)	17' 2" o/c	

[•]Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
2 - Face Mount Hanger	LUS28-2	2.00"	N/A	6-16d	4-16d		

[•] Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 17' 1 3/4"	N/A	8.6		
1 - Uniform (PSF)	0 to 17' 5 1/2" (Front)	1' 3"	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Trevor Steelsmitt09/18/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com		

Level, RB4 1 piece(s) 5 1/8" x 6" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4675 @ 2' 5 5/8"	12012 (3.75")	Passed (39%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2372 @ 1' 9 3/4"	6247	Passed (38%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	0 @ N/A	N/A	Passed (N/A)		N/A
Neg Moment (Ft-lbs)	-4905 @ 2' 5 5/8"	5452	Passed (90%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.183 @ 5' 1 1/2"	0.266	Passed (2L/348)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.211 @ 5' 1 1/2"	0.354	Passed (2L/302)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

PASSED

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Right cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 4' 9 3/4".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Hanger on 6" DF beam	3.75"	Hanger ¹	1.50"	-261	-1804	-2065	See note 1
2 - Beam - DF	3.75"	3.75"	1.50"	617	4058	4675	None

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- $\bullet\,\,^{\text{1}}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 10" o/c	
Bottom Edge (Lu)	4' 10" o/c	

[•]Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-T	ie -					
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	3 3/4" to 5' 1 1/2"	N/A	7.5		
1 - Uniform (PSF)	0 to 5' 1 1/2" (Front)	1' 4"	17.0	150.0	Default Load
2 - Point (lb)	5' 1" (Front)	N/A	204	1337	Linked from: RB3, Support 2

ForteWEB Software Operator	Job Notes
Trevor Steelsmitt09/18/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com	

Level, RB5 1 piece(s) 2 x 12 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1065 @ 3 3/4"	1406 (1.50")	Passed (76%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	865 @ 1' 3"	2329	Passed (37%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	2663 @ 5' 3 3/4"	2729	Passed (98%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.148 @ 5' 3 3/4"	0.500	Passed (L/810)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.168 @ 5' 3 3/4"	0.667	Passed (L/713)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Hanger on 11 1/4" DF beam	3.75"	Hanger ¹	1.50"	134	996	1130	See note 1
2 - Hanger on 11 1/4" DF beam	3.75"	Hanger ¹	1.50"	134	996	1130	See note 1

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	1' 10" o/c	
Bottom Edge (Lu)	10' o/c	

[•]Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	LUS28	1.75"	N/A	6-10dx1.5	4-10d		
2 - Face Mount Hanger	LUS28	1.75"	N/A	6-10dx1.5	4-10d		

[•] Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	3 3/4" to 10' 3 3/4"	N/A	4.3		
1 - Uniform (PSF)	0 to 10' 7 1/2" (Front)	1' 3"	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Trevor Steelsmitt09/18/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com	

Level, RB6 2 piece(s) 2 x 12 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3996 @ 2' 7 7/8"	7031 (3.75")	Passed (57%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1665 @ 1' 6 3/4"	4658	Passed (36%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	-4116 @ 2' 7 7/8"	5458	Passed (75%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.050 @ 0	0.266	Passed (2L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.056 @ 0	0.354	Passed (2L/999+)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Left cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.
- · Allowed moment does not reflect the adjustment for the beam stability factor.
- · Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Beam - DF	3.75"	3.75"	2.13"	484	3512	3996	None
2 - Beam - DF	3.75"	3.75"	1.50"	-111	-1065	-1176	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 8" o/c	
Bottom Edge (Lu)	5' 8" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 7 1/2"	N/A	8.6		
1 - Uniform (PSF)	0 to 5' 7 1/2" (Front)	2'	17.0	150.0	Default Load
2 - Point (lb)	1" (Front)	N/A	134	996	Linked from: RB5, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Trevor Steelsmitt09/18/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com	

Level, FB1 2 piece(s) 1 3/4" x 18" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	893 @ 4' 6 1/2"	3938 (1.50")	Passed (23%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	281 @ 3' 1/2"	11970	Passed (2%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	977 @ 2' 4 1/4"	38753	Passed (3%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.002 @ 2' 4 1/4"	0.109	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.003 @ 2' 4 1/4"	0.219	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- · Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.50"	255	706	961	Blocking
2 - Hanger on 18" DF beam	3.50"	Hanger ¹	1.50"	263	744	1007	See note 1

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 7" o/c	
Bottom Edge (Lu)	4' 7" o/c	

[•]Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
2 - Face Mount Hanger	IUS3.56/11.88	2.00"	N/A	12-10dx1.5	2-10dx1.5				

[•] Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 4' 6 1/2"	N/A	18.4		
1 - Uniform (PSF)	0 to 4' 10" (Front)	7' 6"	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Trevor Steelsmitt09/18/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com		

Level, FB2 2 piece(s) 1 3/4" x 18" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1935 @ 4"	12031 (5.50")	Passed (16%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1695 @ 1' 11 1/2"	11970	Passed (14%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	7409 @ 7' 6 15/16"	38753	Passed (19%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.098 @ 9' 1 1/16"	0.456	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.145 @ 9' 1 7/16"	0.913	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- · Allowed moment does not reflect the adjustment for the beam stability factor.

		Bearing Length			to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	5.50"	5.50"	1.50"	604	1331	1935	Blocking
2 - Beam - DF	5.50"	5.50"	1.50"	461	927	1387	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	18' 11" o/c	
Bottom Edge (Lu)	18' 11" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 18' 11"	N/A	18.4		
1 - Uniform (PSF)	0 to 18' 11" (Front)	2'	12.0	40.0	Default Load
2 - Point (lb)	4' 6" (Front)	N/A	263	744	Linked from: FB1, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Trevor Steelsmitt09/18/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com		

Level, FB3 1 piece(s) 5 1/8" x 12" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3826 @ 3 3/4"	4997 (1.50")	Passed (77%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3289 @ 1' 3 3/4"	12495	Passed (26%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	13629 @ 7' 5 1/4"	28290	Passed (48%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.314 @ 7' 5 1/4"	0.356	Passed (L/544)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.375 @ 7' 5 1/4"	0.712	Passed (L/456)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 14' 3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Hanger on 12" DF beam	3.75"	Hanger ¹	1.50"	642	3347	3989	See note 1
2 - Hanger on 12" DF beam	3.75"	Hanger ¹	1.50"	642	3347	3989	See note 1

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	14' 3" o/c	
Bottom Edge (Lu)	14' 3" o/c	

[•]Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Face Mount Hanger	HGUS5.25/10	4.00"	N/A	46-10d	16-10d			
2 - Face Mount Hanger	HGUS5.25/10	4.00"	N/A	46-10d	16-10d			

[•] Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	3 3/4" to 14' 6 3/4"	N/A	14.9		
1 - Uniform (PSF)	0 to 14' 10 1/2" (Front)	6'	12.0	75.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Trevor Steelsmitt09/18/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com	

Level, DECK JOISTS 2 piece(s) 2 x 10 DF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	696 @ 3 1/2"	2813 (1.50")	Passed (25%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	607 @ 1' 3/4"	3830	Passed (16%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	2088 @ 6' 3 1/2"	4668	Passed (45%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.147 @ 6' 3 1/2"	0.300	Passed (L/977)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.171 @ 6' 3 1/2"	0.600	Passed (L/842)		1.0 D + 1.0 S (All Spans)
TJ-Pro™ Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- · Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Hanger on 9 1/4" DF beam	3.50"	Hanger ¹	1.50"	101	629	730	See note 1
2 - Hanger on 9 1/4" DF beam	3.50"	Hanger ¹	1.50"	101	629	730	See note 1

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' o/c	
Bottom Edge (Lu)	12' o/c	

 $[\]bullet {\sf Maximum\ allowable\ bracing\ intervals\ based\ on\ applied\ load}.$

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Face Mount Hanger	LUS28-2	2.00"	N/A	6-10dx1.5	3-10d			
2 - Face Mount Hanger	LUS28-2	2.00"	N/A	6-10dx1.5	3-10d			

[•] Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 12' 7"	16"	12.0	75.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Trevor Steelsmitt09/18/23 Snake River Engineering (208) 453-6512 trevor@snakeriverengineering.com		

File Name: 2023-5574 Kaczmarek Shop ADU

Project Title: Engineer: Project ID: Project Descr:

Steel Beam Project File: 05 Beams.ec6

LIC#: KW-06013353, Build:20.23.05.25 SNAKE RIVER ENGINEERING (c) ENERCALC INC 1983-2023

DESCRIPTION: --None--

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method 'Allowable Strength Design Fy : Steel Yield : 50.0 ksi
Beam Bracing : Beam is Fully Braced against lateral-torsional buckling E: Modulus : 29,000.0 ksi

Bending Axis: Major Axis Bending

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading

Uniform Load: D = 0.0120, L = 0.040 ksf, Tributary Width = 10.0 ft

Uniform Load: D = 0.0120 ksf, Tributary Width = 11.50 ft

Uniform Load: D = 0.0170, S = 0.150 ksf, Tributary Width = 25.0 ft

DESIGN SUMMARY			Design OK
Maximum Bending Stress Ratio =	0.673 : 1	Maximum Shear Stress Ratio =	0.245 : 1
Section used for this span	W33x118	Section used for this span	W33x118
Ma : Applied	696.872 k-ft	Va : Applied	79.643 k
Mn / Omega : Allowable	1,035.429 k-ft	Vn/Omega : Allowable	325.060 k
Load Combination	+D+S	Load Combination Location of maximum on span	+D+S 0.000 ft
Span # where maximum occurs	Span # 1	Span # where maximum occurs	Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0.743 in Ratio = 0 in Ratio = 0.902 in Ratio = 0 in Ratio =	564 >=480. Span: 1 : S Only 0 <480.0 n/a 466 >=240. Span: 1 : +D+S 0 <240.0 n/a	

Maximum	Eaross	P Ctropped	for Load	Combinations
waximum	-orces	& Stresses	tor Load	Combinations

Load Combination		Max Stress	s Ratios		Summary of Moment Values Summary of Shear							Values
Segment Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx Mr	nx/Omega Cb	Rm	Va Max	VnxVnx/	Omega
D Only												
Dsgn. L = 35.00 ft	1	0.118	0.043	122.65		122.65	1,729.17	1,035.43 1.00	1.00	14.02	542.85	325.06
+D+L												
Dsgn. L = 35.00 ft	1	0.178	0.065	183.90		183.90	1,729.17	1,035.43 1.00	1.00	21.02	542.85	325.06
+D+S												
Dsgn. L = 35.00 ft	1	0.673	0.245	696.87		696.87	1,729.17	1,035.43 1.00	1.00	79.64	542.85	325.06
+D+0.750L												
Dsgn. L = 35.00 ft	1	0.163	0.059	168.59		168.59	1,729.17	1,035.43 1.00	1.00	19.27	542.85	325.06
+D+0.750L+0.750S												
Dsgn. L = 35.00 ft	1	0.579	0.211	599.25		599.25	1,729.17	1,035.43 1.00	1.00	68.49	542.85	325.06
+0.60D												
Dsgn. L = 35.00 ft	1	0.071	0.026	73.59		73.59	1,729.17	1,035.43 1.00	1.00	8.41	542.85	325.06

Overall Maximum Deflections

Load Consyldia/a23bon	Span	Max. "-" Defl Location in Span		Load Combination	Max. "+" DeafgeL3xcati	∂ n5in Span
+D+S	1	0.9022	17.600		0.0000	0.000

Project Title: Engineer: Project ID: Project Descr:

Steel BeamProject File: 05 Beams.ec6LIC#: KW-06013353, Build:20.23.05.25SNAKE RIVER ENGINEERING(c) ENERCALC INC 1983-2023

DESCRIPTION: --None--

Vertical ReactionsSupport notation: Far left is #' Values in KIPS

	Sup	port riotation . Far left is #	values in Kii S	
Support 1	Support 2			
79.643	79.643			
79.643	79.643			
65.625	65.625			
14.018	14.018			
21.018	21.018			
79.643	79.643			
19.268	19.268			
68.486	68.486			
8.411	8.411			
7.000	7.000			
65.625	65.625			
	79.643 79.643 65.625 14.018 21.018 79.643 19.268 68.486 8.411 7.000	Support 1 Support 2 79.643 79.643 79.643 79.643 65.625 65.625 14.018 14.018 21.018 21.018 79.643 79.643 19.268 19.268 68.486 68.486 8.411 8.411 7.000 7.000	79.643 79.643 79.643 79.643 65.625 65.625 14.018 14.018 21.018 21.018 79.643 79.643 19.268 19.268 68.486 68.486 8.411 8.411 7.000 7.000	Support 1 Support 2 79.643

09/18/23 Page 35 of 75

WOOD HEADER ALLOWABLE LOADS (kips/ft)

Load Duration Factor: 1.15 Top Chord Bracing: 2'-0" O.C.

LVL Grade: 2.0E Max TL Deflection: L/240, 0.75in

Repetitive Stress Increase: No

	Header Span										
Header Type	2'	3'	4'	5'	6'	8'	10'	12'	14'	16'	18'
(2) 2x4 DF Stud	1.15	0.69	0.29	0.22	0.12	NA	NA	NA	NA	NA	NA
(3) 2x4 DF Stud	1.84	1.04	0.46	0.35	0.18	NA	NA	NA	NA	NA	NA
(2) 2x6 DF #2	3.34	1.44	0.83	0.48	0.36	0.20	0.12	NA	NA	NA	NA
(3) 2x6 DF #2	5.06	2.19	1.27	0.72	0.55	0.30	0.18	0.13	NA	NA	NA
(2) 2x8 DF #2	5.41	2.30	1.27	0.80	0.59	0.32	0.20	0.14	0.09	NA	NA
(3) 2x8 DF #2	8.74	3.39	2.19	1.18	0.97	0.53	0.33	0.23	0.16	0.12	NA
(2) 2x10 DF #2	8.05	3.39	1.96	1.18	0.89	0.48	0.31	0.21	0.15	0.10	NA
(3) 2x10 DF #2	13.23	5.18	3.22	1.80	1.38	0.82	0.52	0.36	0.25	0.20	0.15
(2) 2x12 DF #2	10.81	4.83	2.65	1.60	1.15	0.67	0.41	0.29	0.21	0.15	0.12
(3) 2x12 DF #2	17.94	7.02	4.49	2.40	1.96	1.10	0.70	0.48	0.35	0.26	0.21
(2) 1-3/4x7-1/4 LVL	13.80	6.79	3.80	2.40	1.61	0.94	0.52	0.30	0.18	0.12	NA
(3) 1-3/4x7-1/4 LVL	20.70	10.47	5.64	3.50	2.53	1.38	0.79	0.45	0.28	0.17	NA
(2) 1-3/4x9-1/2 LVL	24.73	10.47	5.64	3.75	2.65	1.50	0.92	0.63	0.39	0.24	0.15
(3) 1-3/4x9-1/2 LVL	37.15	17.25	8.51	6.00	4.03	2.30	1.38	0.95	0.60	0.37	0.22
(2) 1-3/4x11-7/8 LVL	40.71	17.25	8.86	6.00	4.49	2.53	1.61	1.12	0.82	0.53	0.32
(3) 1-3/4x11-7/8 LVL	61.30	24.15	13.23	8.75	6.67	3.80	2.42	1.61	1.15	0.79	0.48
(2) 1-3/4x14 LVL	56.47	24.15	12.54	8.00	5.75	3.45	2.19	1.50	1.13	0.86	0.54
(3) 1-3/4x14 LVL	85.10	28.75	18.86	12.00	8.63	5.29	3.34	2.30	1.61	1.27	0.81

09/18/23 Page 36 of 75

DU (6) Beam Calculations

Additional Drift Revol R	DO (6) Beam Caic	ulations							
Deed Lord		Additional Drift	Roof	Floor	Deck	Wall	Total Load	T-4-	11
Description: 1.0 0.0 0.0 177.5 367	Trib							lota	I Load
Live Service Uses	1110	0.0	U	7.3	0	5.55			
Description: 2.0/1. Opening	Dead Load	-	0.0	90.0	0.0	177.3	267.3 plf	567.	.3 plf
Header Callous		0		300.0			300.0 plf		
Header Callous									
Header Callous				1	T .	1	I	1	1
Mode	Description:	3.0 ft Opening							
Mode									
Wood Design	Heeder Celleut	4x8							
Ming Stude 12 26	Header Callout	DF-L No. 2							
Ming Stude 12 26	[(1) 2x6							
Wood Design Special	Trimmers								
Wood Design Special	a. 1	(2) 2x6							
Special OF-L Special	King Studs	DF-L No. 2							
Special OF-L Special									,
Grade No.2						1			
Width 3.50 in									
Reaction Depth	F								
Reaction Dead Load 403 lbs					 	 		-	
Dead Load	Deptil	7.25 ITI		I	I	1	I .	1	l .
Dead Load	Reaction								
Load		401 lbs							
Sear and Moment Market M									
Sear and Moment Market M									
Sear and Moment Market M	Load								
Adjustment Factors	lu	3.0 ft							
Adjustment Factors									
Material Properties	<u> </u>					•		•	
Material Properties	Adjustment Factors								
Material Properties		1.15							
Material Properties									
Fb 900 psi	L	l e e e e e e e e e e e e e e e e e e e		l.	1		l .		
Fy 180 psi E 1,600,00 psi E 1,600,00 psi E 1,600,00 psi E 1,600,00 psi E 1,600,00 psi E 1,600,00 psi E 1,600,00 psi E 1,600,0	Material Properties			-					
E 1,600,000 psi	Fb	900 psi							
Emin S80,000 psi	Fv	180 psi							
Colculated Prop. A 25.38 in^2	E	1,600,000 psi							
A 25.38 in 2 111.15 in n 4 111.15 in n 4 1 111.15 in n 4 1 111.15 in n 4 1 1 1 1 1 1 1 1 1	Emin	580,000 psi							
A 25.38 in 2 111.15 in n 4 111.15 in n 4 1 111.15 in n 4 1 111.15 in n 4 1 1 1 1 1 1 1 1 1	-								
111.15 in-4	Calculated Prop.								
S 30.66 in 3	А	25.38 in^2							
RB 6.62 Emin' 580,000 psi	ı	111.15 in^4							
Emin	S	30.66 in^3							
FbE	RB	6.62							
Shear and Moment	F								
Shear and Moment M 7,658 lb-in									
Shear and Moment	-								
M 7,658 lb-in V 851 lbs	CL	1							
M 7,658 lb-in V 851 lbs	e								
Stress		7.550 "			T	1	ı	1	1
Stress	F				1			-	
Fb 250 psi	٧L	921 IDS		l	I	1	l	1	<u>l</u>
Fb 250 psi	Stress								
Fb		250 psi							
fb/Fb' 0.20									
fv 50 psi Fv' 207 psi	fb/Fb'								
fv/Fv' 0.24									
Max Ratio 0.24									
Pass									
Deflection	Max Ratio								
Δτι 0.01 in		Pass							
Δτι 0.01 in	Deflection								1
L/6,192 Δu 0.00 in L/11,709		0.01 in							
Δu 0.00 in L/11,709	211				†				
L/11,709	Διι				<u> </u>	1		1	
	-				Ì	1		1	
	L								

09/18/23 Page 37 of 75

DU ((5)	Beam	Calcu	lations
------	-----	------	-------	---------

20 (5) 20am can				1	1		
	Additional Drift	Roof	Floor	Deck	Wall	Total Load	Takaliand
							Total Load
Trib	0.0	3.5	0	0	9.33		4
							761.8 plf
Dead Load	-	59.5	0.0	0.0	177.3	236.8 plf	4
Live / Snow Load	0	525.0	0.0	0.0	-	525.0 plf	
	46066	5060 :	10060	2560		1	
Description:	16.0 ft Opening	5.0 ft Opening	10.0 ft Opening	3.5 ft Opening			
	(3)11-7/8"	4x8	(3)9-1/2"	4x8			
Header Callout	LVL 2.0E	DF-L No. 2	LVL 2.0E	DF-L No. 2			
							+ + + + + + + + + + + + + + + + + + + +
Trimmers	(2) 2x6	(1) 2x6	(2) 2x6	(1) 2x6			
	DF-L No. 2	DF-L No. 2	DF-L No. 2	DF-L No. 2			<u> </u>
King Studs	(6) 2x6	(3) 2x6	(4) 2x6	(2) 2x6			
ining status	DF-L No. 2	DF-L No. 2	DF-L No. 2	DF-L No. 2			
Wood Design							
Species	LVL	DF-L	LVL	DF-L			
Grade	2.0E	No. 2	2.0E	No. 2		ļ	
Width	5.25 in	3.50 in	5.25 in	3.50 in		L	
Depth	11.88 in	7.25 in	9.50 in	7.25 in			
	•	•				•	
Reaction							
Dead Load	1,894 lbs	592 lbs	1,184 lbs	414 lbs		i	
Live Load	4,200 lbs	1,313 lbs	2,625 lbs	919 lbs			
•							
Load							
lu	16.0 ft	5.0 ft	10.0 ft	3.5 ft			1
le	29.4 ft	10.0 ft	18.7 ft	7.2 ft		i	1
Adjustment Factors							
Cd	1.15	1.15	1.15	1.15			
CF	1	1.2	1.1	1.2			
٠.١	1	1	1	1	ı	1	
Material Properties							
Fb	2,900 psi	900 psi	2,900 psi	900 psi			
Fv	285 psi	180 psi	285 psi	180 psi		1	
					 		+
E	2,000,000 psi	1,600,000 psi	2,000,000 psi	1,600,000 psi		 	
Emin	1,016,535 psi	580,000 psi	1,016,535 psi	580,000 psi		l .	
Calculated Prop.							
Α	62.34 in^2	25.38 in^2	49.88 in^2	25.38 in^2			
î	732.62 in^4	111.15 in^4	375.10 in^4	111.15 in^4		 	
' c	123.39 in^3	30.66 in^3	78.97 in^3	30.66 in^3		1	
S						 	+
RB Emin'	12.34	8.41	8.79	7.16		 	
Emin'	1,016,535 psi	580,000 psi	1,016,535 psi	580,000 psi		 	
FbE	8,014 psi	9,837 psi	15,793 psi	13,592 psi	 		
Fb*	3,335 psi	1,242 psi	3,669 psi	1,242 psi		ļ	
CL	1	1	1	1]	
Shear and Moment							
М	292,520 lb-in	28,566 lb-in	114,266 lb-in	13,998 lb-in			
V		1,904 lbs	3,809 lbs	1,333 lbs			
						•	
Stress							
fb	2,371 psi	932 psi	1,447 psi	457 psi			
Fb'	3,226 psi	1,233 psi	3,615 psi	1,236 psi		 	
fb/Fb'	0.73	0.76	0.40	0.37		 	
fv						 	+
tv Fv'	147 psi	113 psi	115 psi	79 psi			
	328 psi	207 psi	328 psi	207 psi	 		+
fv/Fv'	0.45	0.54	0.35	0.38		 	
Max Ratio	0.73	0.76	0.40	0.38			
	Pass	Pass	Pass	Pass			
D-flkl							
Deflection	0.77.	0.05:	0.22.	0.01:		1	Ţ. T
Δτι	0.77 in	0.06 in	0.23 in	0.01 in		ļ	
	L/250	L/996	L/525	L/2,904		L	
Διι	0.53 in	0.04 in	0.16 in	0.01 in			
	L/363	L/1,445	L/762	L/4,214		<u> </u>	
	Pass	Pass	Pass	Pass			
	,						

09/18/23 Page 38 of 75

DU (4) Beam Calculations

DO (4) Bealli Calci	ulutions -		1	1			T	
	Additional Drift	Roof	Floor	Deck	Wall	Total Load	Tota	Load
Trib	0.0	15	0	0	9.33		TOTA	Loau
	0.0	13	Ů		5.55			
Dead Load	-	255.0	0.0	0.0	177.3	432.3 plf	2,682	2.3 plf
Live / Snow Load	0	2250.0	0.0	0.0	-	2,250.0 plf		
	5.0 ft On a lan							
Description:	5.0 ft Opening							
Header Callout	(2)9-1/2"							
	LVL 2.0E							
Trimmers	(3) 2x6							
	DF-L No. 2							
King Studs	(3) 2x6							
L	DF-L No. 2							
Wood Design								
Species	LVL							
Grade	2.0E							
Width	3.50 in							
Depth	9.50 in	•						
- ·								
Reaction	1.001 11-			I	1			I
Dead Load Live Load	1,081 lbs 5,625 lbs			1	+			
Live Loau	5,025 IDS		<u> </u>		 	<u> </u>	 	
Load								
lu	5.0 ft			1	1			
					1			
le	10.3 ft				1			
A dissature and Except up								
Adjustment Factors Cd	1.15			I	T		1	ı
CF	1.13							
CFL	1,1				1		I	l
Material Properties								
Fb	2,900 psi							
Fv	285 psi							
E	2,000,000 psi							
Emin	1,016,535 psi							
_	•			•				•
Calculated Prop.								
А	33.25 in^2							
1	250.07 in^4							
S	52.65 in^3							
RB	9.79							
Emin'	1,016,535 psi							
FbE	12,726 psi							
Fb*	3,669 psi			1	 			
CL	1							
o								
Shear and Moment	100 505 11. 1			1	1			
M	100,585 lb-in			+	1			
٧L	6,706 lbs		I.	1	1	I.	I	1
Stress								
fb	1,911 psi							
Fb'	3,598 psi							
fb/Fb'	0.53							
fv	303 psi	·						
Fv'	328 psi				1			
fv/Fv'	0.92			1	 			
Max Ratio	0.92							
	Pass							
Deflection								
Δτι	0.08 in							
	L/796				1			
Διι	0.06 in			1				
	L/948							
	Pass							
				•				

09/18/23 Page 39 of 75

DU (3)	Beam	Calc	culations

DO (5) Bealli Calc	alations		1		1	T	T
	Additional Drift	Roof	Floor	Deck	Wall	Total Load	Total Load
Trib	0.0	16.25	0	0	4.83	1	
ļ							2,805.5 plf
Dead Load	- 0	276.3	0.0	0.0	91.8	368.0 plf	2,000.5 p.,
Live / Snow Load	0	2437.5	0.0	0.0		2,437.5 plf	<u> </u>
1		T	1		Т		
Description:	11.0 ft Opening	3.5 ft Opening	14.8 ft Opening				
Header Callout	(3)14"	4x12	5.25x21				
nedder danoae	LVL 2.0E	DF-L No. 2	DF/DF 24F - V4				
Trimmers	(4) 2x6	(2) 2x6	(5) 2x6				
	DF-L No. 2	DF-L No. 2	DF-L No. 2				
King Studs	(2) 2x6 DF-L No. 2	(1) 2x6 DF-L No. 2	(2) 2x6 DF-L No. 2				
L	DF=L NO. 2	DF-L NO. 2	DF=L NO. 2				
Wood Design							
Species	LVL	DF-L	DF/DF				
Grade	2.0E	No. 2	24F - V4		-	+	
Width Depth	5.25 in 14.00 in	3.50 in 11.25 in	5.25 in 21.00 in		+	-	
	14.00 111	11.23 111	21.00 III		<u> </u>	<u> </u>	J
Reaction		Ī	1 .		•		
Dead Load	2,024 lbs	644 lbs	2,714 lbs				
Live Load	13,406 lbs	4,266 lbs	17,977 lbs		<u> </u>	1	<u> </u>
Load							
Load lu	11 O #	2 = #	1A 0 #				1
lu le	11.0 ft 21.4 ft	3.5 ft 7.2 ft	14.8 ft 29.3 ft			+	
ie	21.4 Jl	7.2 JL	29.3 JL		1		1
Adjustment Factors							
Cd	1.15	1.15	1.15				
CF	1	1	1				
·					•	•	
Material Properties	2.000		2 400 : [ı		1
Fb	2,900 psi	900 psi	2,400 psi				
Fv E	285 psi	180 psi	265 psi				+
Emin	2,000,000 psi 1,016,535 psi	1,600,000 psi 580,000 psi	1,850,000 psi 950,000 psi				+
2111111	1,010,555 psi	360,000 psi	330,000 psi		1		<u> </u>
Calculated Prop.							
Α	73.50 in^2	39.38 in^2	110.25 in^2				
ı	1,200.50 in^4	415.28 in^4	4,051.69 in^4				
S	171.50 in^3	73.83 in^3	385.88 in^3				
RB	11.43	8.91	16.37				
Emin'	1,016,535 psi	580,000 psi	950,000 psi			1	
FbE Eb*	9,339 psi	8,759 psi	4,257 psi			+	
Fb* CL	3,335 psi 1	1,035 psi 1	2,760 psi 1			+	
αį		<u> </u>			<u> </u>	1	1
Shear and Moment							
М	509,202 lb-in	51,551 lb-in	915,564 lb-in				
v	15,430 lbs	4,910 lbs	20,691 lbs				
Chuan							
Stress fb	2,969 psi	698 psi	2,373 psi				
Fb'	3,248 psi	1,028 psi	2,565 psi		 	-	
fb/Fb'	0.91	0.68	0.92				
fv	315 psi	187 psi	282 psi				
Fv'	328 psi	207 psi	305 psi	<u> </u>		ļ <u> </u>	
fv/Fv'	0.96	0.90	0.92			+	
Max Ratio	0.96	0.90	0.92				
L	Pass	Pass	Pass				
Deflection							
Δτι	0.38 in	0.01 in	0.40 in				
.	L/343	L/2,946	L/444				
Διι	0.33 in	0.01 in	0.35 in		-	+	
	L/395	L/3,391	L/511				
	Pass	Pass	Pass				

09/18/23 Page 40 of 75

DU (2) Beam Calculations

Dead Load Live / Snow Load Description:	Additional Drift 0.0 - 0	Roof 13 221.0	0 0 0.0	Deck 0	Wall 3.33	Total Load		l Load
Dead Load Live / Snow Load Description:	-	221.0		0	3.33			Loau
Dead Load Live / Snow Load Description:	-	221.0		Ů	3.33		-1	
Live / Snow Load Description:			0.0					
Description:	0		0.0	0.0	63.3	284.3 plf	2,234	4.3 plf
		1950.0	0.0	0.0	-	1,950.0 plf		
	2.0.0			1			T	1
_	3.0 ft Opening							
Header Callout	4x8							
<u> </u>	DF-L No. 2							
Trimmers	(2) 2x6							
	DF-L No. 2							
King Studs	(1) 2x6							
	DF-L No. 2							
Wood Design								
Species	DF-L						T	T
Grade	No. 2							
Width	3.50 in							
Depth	7.25 in							
				-				
Reaction	125 !!			1			1	
Dead Load	426 lbs						<u> </u>	
Live Load	2,925 lbs		<u> </u>	1			<u> </u>	<u> </u>
Load				1	-		T	
lu	3.0 ft				1	 	 	
le	6.2 ft							<u> </u>
Adjustment Factors				1	1		т	
Cd	1.15						 	
CF	1.2							<u> </u>
Material Properties								
Fb	900 psi							
Fv	180 psi							
E	1,600,000 psi							
Emin	580,000 psi						+	
	300,000 ps.			1			.1	1
Calculated Prop.								
A	25.38 in^2							
ĵ -	111.15 in^4						+	
S	30.66 in^3						1	
RB	6.62						1	
Emin'	580,000 psi							
FbE	15,858 psi							
Fb*	1,242 psi							
CL	1							
			-					
Shear and Moment								
М	30,163 lb-in				ļ		ļ	
V	3,351 lbs							
C4								
Stress fb	004			T	1		Т	
Fb'	984 psi 1,237 psi			+	-	 	+	
fb/Fb'	0.80						+	
fv	198 psi			1		<u> </u>	†	
Fv'	207 psi							
fv/Fv'	0.96							
Max Ratio	0.96							
	Pass							
Deflection	0.03 !			1	1		T	1
Δτι	0.02 in			1	1	 	+	
	L/1,572		1		 	 	 	
۸	0.02 in				1	 	+	\vdash
Διι	I/I XIII							
Διι	L/1,801 Pass							

09/18/23 Page 41 of 75

DU Beam Calculations

ī								1
	Additional Drift	Roof	Floor	Deck	Wall	Total Load	Total	Lood
- 11							Total	LOau
Trib	0.0	3.5	0	0	4.83			
		50.5		2.2	04.0	454.0.16	676.	3 plf
Dead Load	- 0	59.5	0.0	0.0	91.8	151.3 plf		
Live / Snow Load	U	525.0	0.0	0.0		525.0 plf		
Description:	3.5 ft Opening	5.0 ft Opening						
-					u .	I.	I.	<u> </u>
Г	440	4,40						
Header Callout	4x8	4x8						
l l	DF-L No. 2	DF-L No. 2						
Trimmers	(1) 2x6	(1) 2x6						
rinniners	DF-L No. 2	DF-L No. 2						
ľ	(1) 2x6	(1) 2x6						
King Studs	DF-L No. 2	DF-L No. 2						
•	D. 2110.2	D1 E110.E						
Wood Design								
Species	DF-L	DF-L			1	l		
Grade	No. 2	No. 2						
Width	3.50 in	3.50 in			 			
Depth					+			
Бериі	7.25 in	7.25 in			1	l	l .	
Peaction								
Reaction	265 lbc	270 lbs	l					
Dead Load	265 lbs	378 lbs			1			
Live Load	919 lbs	1,313 lbs			<u> </u>	ļ	ļ	
Load								
lu	3.5 ft	5.0 ft]			
le	7.2 ft	10.0 ft						
L	=,-				ı	l .	l.	
I								1
Adjustment Factors					1	T	T	
Cd	1.15	1.15						
CF	1.2	1.2						
1								
Material Properties					1	ı	ı	
Fb	900 psi	900 psi						
Fv	180 psi	180 psi						
E	1,600,000 psi	1,600,000 psi						
Emin	580,000 psi	580,000 psi						
	380,000 psi	380,000 psi						
I								
Calculated Prop.					1	ı	ı	
A	25.38 in^2	25.38 in^2						
1	111.15 in^4	111.15 in^4						
S	30.66 in^3	30.66 in^3						
RB	7.16	8.41						
Emin'	580,000 psi	580,000 psi			İ			
FbE	13,592 psi	9,837 psi						
Fb*	1,242 psi	1,242 psi			i e			
CL	1,242 psi	1,242 psi			 			
CL	1	1			1	l	l .	
Channandaa :								
Shear and Moment	40.400" :	25.255	ı					
М	12,426 lb-in	25,360 lb-in			ļ			
V	1,183 lbs	1,691 lbs			l			
Stress			1		1	ı	ı	
fb	405 psi	827 psi			ļ			
Fb'	1,236 psi	1,233 psi						
fb/Fb'	0.33	0.67						
fv	70 psi	100 psi						
Fv'	207 psi	207 psi						
fv/Fv'	0.34	0.48						
Max Ratio	0.34	0.67						
	Pass	Pass						
L	. 033	. 333						
Deflection								
Δτι	0.01 in	0.05 in		_				
ļ	L/3,271	L/1,122						
Διι	0.01 in	0.04 in						
	L/4,214	L/1,445			i e			
	Pass	Pass						
	F Ø55	F d55						

09/18/23 Page 42 of 75

WOOD TALL WALL & KING STUD ALLOWABLE LOADS (plf):

Load Duration Factor: 1.6

Max Deflection: L/180

Max	Vert.	Load:	50 lbs
IVIdX	vert.	LOau:	שנו טכ

				Height			
King Stud	12'	14'	16'	18'	20'	22'	24'
(1) 2x4 Stud	12.8	NA	NA	NA	NA	NA	NA
(2) 2x4 Stud	25.6	NA	NA	NA	NA	NA	NA
(3) 2x4 Stud	38.4	NA	NA	NA	NA	NA	NA
(1) 2x6 DF #2	57.0	35.8	24.1	16.9	NA	NA	NA
(2) 2x6 DF #2	114.0	71.6	48.2	33.8	NA	NA	NA
(3) 2x6 DF #2	171.0	107.4	72.3	50.7	NA	NA	NA
(1) 2x8 DF #2	130.0	81.7	55.0	38.7	28.2	21.2	16.3
(2) 2x8 DF #2	260.0	163.4	110.0	77.4	56.4	42.4	32.6
(3) 2x8 DF #2	390.0	245.1	165.0	116.1	84.6	63.6	48.9
(1) 2x6 LSL	67.8	42.7	28.5	20.0	14.7	NA	NA
(2) 2x6 LSL	135.6	85.4	57.0	40.0	29.4	NA	NA
(3) 2x6 LSL	203.4	128.1	85.5	60.0	44.1	NA	NA
(1) 2x8 LSL	155.0	98.3	65.5	46.0	33.5	25.2	19.5
(2) 2x8 LSL	310.0	196.6	131.0	92.0	67.0	50.4	39.0
(3) 2x8 LSL	465.0	294.9	196.5	138.0	100.5	75.6	58.5

*NOTE 1: this table combined with trimmer table to determine combined stress on each common wall stud. NOTE 2: allowable loads are interpolated at heights not in 2' increments.

WOOD TRIMMER ALLOWABLE LOADS (kips):

Load Duration Factor: 1.0 Eccentricity: 0"

Weak Axis Braced: Y

	Height								
Trimmer Type	8'	10'	12'	14'	16'	18'	20'		
(1) 2x4 Stud	2.4	1.7	1.2	NA	NA	NA	NA		
(2) 2x4 Stud	4.9	3.4	2.4	NA	NA	NA	NA		
(3) 2x4 Stud	7.1	5.0	3.6	NA	NA	NA	NA		
(1) 2x6 DF #2	5.1	5.1	5.0	3.8	3.0	NA	NA		
(2) 2x6 DF #2	10.3	10.3	10.1	7.7	6.0	NA	NA		
(3) 2x6 DF #2	15.4	15.4	15.1	11.6	9.1	NA	NA		
(1) 2x8 DF #2	6.7	6.7	6.7	6.7	6.4	5.3	4.4		
(2) 2x8 DF #2	13.5	13.5	13.5	13.5	12.9	10.6	8.8		
(3) 2x8 DF #2	20.3	20.3	20.3	20.3	19.4	15.9	13.2		

*NOTE 1: this table combined with king stud table to determine combined stress on each common wall stud.

*NOTE 2: allowable loads are interpolated at heights not in 2' increments.

09/18/23 Page 43 of 75

TALL WALL CALCULATIONS:

This spreadsheet is used for designing a stud wall according to the NDS.

	O' Tall Wall	12 5' Tall 14/all	12 5' Tall Wall	10' Tall Wall	10' Tall Wall	
scription:	9' Tall Wall	13.5' Tall Wall	13.5' Tall Wall	10' Tall Wall	18' Tall Wall	
Ī		ı		I	F. F.	
Туре:	2x Lumber (2"-4")	2x Lumber (2"-4")	2x Lumber (2"-4")	2x Lumber (2"-4")	2x Lumber (2"-4")	
Species:	DF-L	DF-L	DF-L	DF-L	DF-L	
Grade:	No. 2	No. 2	No. 2	No. 2	No. 2	
Nominal width, t =	(1) 2	(1) 2	(1) 2	(1) 2	(1) 2	
Actual width =	1.50 in	1.50 in	1.50 in	1.50 in	1.50 in	
Nominal depth, d =	6 F FO in	10	6 F FO in	6 5.50 in	10	
Actual depth = Span, L =	5.50 in 9.000 ft	9.25 in 13.500 ft	5.50 in 13.500 ft	10.000 ft	9.25 in 18.000 ft	
w/o Plates	8.750 ft	13.250 ft	13.250 ft	9.750 ft	17.750 ft	
Stud spacing, s =	16 in	16 in	16 in	16 in	16 in	
Lat. Pressure, w _{wind} =	13.36 psf	13.36 psf	13.36 psf	13.36 psf	13.36 psf	
Axial load, P = Eccentricity, e =	3229 lbs 0 in	4453 lbs 0 in	891 lbs 0 in	5121 lbs 0 in	891 lbs 0 in	
K _{cE} =	0.3	0.3	0.3	0.3	0.3	
C =	0.8	0.8	0.8	0.8	0.8	
w =	17.8 plf	17.8 plf	17.8 plf	17.8 plf	17.8 plf	
-، ا	000	000:	000:	000	000:	
Fb Fv	900 psi 180 psi	900 psi 180 psi	900 psi 180 psi	900 psi 180 psi	900 psi 180 psi	
Fc-prll	1,350 psi	1,350 psi	1,350 psi	1,350 psi	1,350 psi	
Fc-perp	625 psi	625 psi	625 psi	625 psi	625 psi	
C _d	1.60	1.60	1.60	1.60	1.60	
$C_{F,Fb}$	1.30	1.10	1.30	1.30	1.10	
C _{F,FcprII}	1.10	1.00	1.10	1.10	1.00	
C ,	1.15	1.15	1.15	1.15	1.15	
C p	0.47	0.59	0.23	0.39	0.37	
C _H	1.00	1.00	1.00	1.00	1.00	
C _b	1.07	1.00	1.07	1.07	1.00	
E	1,600,000 psi	1,600,000 psi	1,600,000 psi	1,600,000 psi	1,600,000 psi	
Emin Allowable Stress:	580,000 psi	580,000 psi	580,000 psi	580,000 psi	580,000 psi	
$F'_b = F_b C_d C_F C_r =$	2153 psi	1822 psi	2153 psi	2153 psi	1822 psi	
$F'_{v} = F'_{v} C_{d} C_{H} =$	288 psi	288 psi	288 psi	288 psi	288 psi	
$F^*_c = F_c C_d C_F =$	2376 psi	2160 psi	2376 psi	2376 psi	2160 psi	
$F_{cE} = (K_{cE} E')/(I_e/d)2 =$	1317 psi	1625 psi	574 psi	1061 psi	905 psi	
$F'_c = F_c C_d C_F C_p =$	1118 psi	1266 psi	542 psi	938 psi	809 psi	
$F'_{cperp} = F_{cperp} Cb =$	668 psi	625 psi	668 psi	668 psi	625 psi	
E' = E =	1600000 psi	1600000 psi	1600000 psi	1600000 psi	1600000 psi	
F _{bE} =	2712 psi	1065 psi	1791 psi	2434 psi	795 psi	
Slenderness Ratio:	< 50 OK	< 50 OK	< 50 OK	< 50 OK	< 50 OK	
R _B =	16	26	20	17	30	
Bending:	< F'b OK	<u>< F'b OK</u>	<u>< F'b OK</u>	<u>< F'b OK</u>	<u>< F'b OK</u>	
M = w L ² /8 + P e/12 =	171 ft-lbs	391 ft-lbs	391 ft-lbs	212 ft-lbs	702 ft-lbs	
$f_b = M/S =$	271 psi	219 psi	620 psi	336 psi	394 psi	
S =	8 in ³	21 in ³	8 in ³	8 in ³	21 in ³ < F'v OK	
Shear: V = w L/2 =	< F'v OK 78 lbs	< F'v OK 118 lbs	< F'v OK 118 lbs	< F'v OK 87 lbs	158 lbs	
f _v = 1.5 V/A =	14 psi	13 psi	21 psi	16 psi	17 psi	
A =	8 in ²	14 in²	8 in ²	8 in ²	14 in ²	
Compression:	<u>< F'c OK</u>	< F'c OK	< F'c OK	< F'c OK	< F'c OK	
f _c = P/A =	391 psi	321 psi	108 psi	621 psi	64 psi	
Compression (perp.):	< F'c OK	< F'c OK	< F'c OK	< F'c OK	< F'c OK	
f _{c perp} = P/A =	391 psi	321 psi	108 psi	621 psi	64 psi	
Combined:	< 1.0 OK	< 1.0 OK	< 1.0 OK	< 1.0 OK	< 1.0 OK	
(fc/Fc)2 + {fb/[Fb(1-(fc/FcE)]} =	0.30	0.21	0.39	0.81	0.24	
	> 180 OK	> 180 OK	> 180 OK	> 180 OK	> 180 OK	
Deflection:						
Deflection: D = 22.5 w L ⁴ /E' I = I =	0.07 in 21 in^4	0.08 in 99 in^4	0.37 in 21 in^4	0.11 in 21 in^4	0.25 in 99 in^4	

09/18/23 Page 44 of 75

TALL WALL CALCULATIONS:

F			1		
escription:	11.5' Tall Wall	16' Tall Wall	16' Tall Wall	16' Tall Wall	
	2x Lumber (2"-4")	2x Lumber (2"-4")	2x Lumber (2"-4")	2x Lumber (2"-4")	
Type:					
Species: Grade:	DF-L No. 2	DF-L No. 2	DF-L No. 2	DF-L No. 2	
					I
Nominal width, t =	(1) 2	(2) 2	(1) 2	(1) 2	
Actual width =	1.50 in 6	3.00 in	1.50 in	1.50 in	
Nominal depth, d = Actual depth =	5.50 in	6 5.50 in	6 5.50 in	6 5.50 in	
Span, L =	11.500 ft	16.000 ft	16.000 ft	16.000 ft	
w/o Plates	11.250 ft	15.750 ft	15.750 ft	15.750 ft	
Stud spacing, s =	16 in	12 in	8 in	16 in	
Lat. Pressure, w _{wind} =	13.36 psf	5.00 psf	13.36 psf	13.36 psf	
Axial load, P = Eccentricity, e =	3618 lbs 0 in	4695 lbs 0 in	1670 lbs 0 in	891 lbs 0 in	
K _{cE} =	0.3	0.3	0.3	0.3	
c =	0.8	0.8	0.8	0.8	
w =	17.8 plf	5.0 plf	8.9 plf	17.8 plf	
r	000 :	000 :	000 :	000 :	
Fb Fv	900 psi 180 psi	900 psi 180 psi	900 psi 180 psi	900 psi 180 psi	
Fc-prll	1,350 psi	1,350 psi	1,350 psi	1,350 psi	
Fc-perp	625 psi	625 psi	625 psi	625 psi	
C_d	1.60	1.60	1.60	1.60	
C _{F,Fb}	1.30	1.30	1.30	1.30	
C _{F,FcprII}	1.10	1.10	1.10	1.10	
C,	1.15	1.15	1.15	1.15	
C _p	0.31	0.16	0.16	0.16	
C _H	1.00	1.00	1.00	1.00	
C ,	1.07	1.07	1.07	1.07	
E	1,600,000 psi	1,600,000 psi	1,600,000 psi	1,600,000 psi	
Emin	580,000 psi	580,000 psi	580,000 psi	580,000 psi	
Allowable Stress:					<u> </u>
$F'_b = F_b C_d C_F C_r =$	2153 psi	2153 psi	2153 psi	2153 psi	
$F'_{v} = F'_{v} C_{d} C_{H} =$	288 psi	288 psi	288 psi	288 psi	
$F_c^* = F_c C_d C_F =$	2376 psi	2376 psi	2376 psi	2376 psi	
$F_{cE} = (K_{cE} E')/(I_e/d)2 =$	797 psi	406 psi	406 psi	406 psi	
$F'_c = F_c C_d C_F C_p =$	732 psi	391 psi	391 psi	391 psi	
$F'_{c perp} = F_{c perp} Cb =$	668 psi	668 psi	668 psi	668 psi	
E' = E =	1600000 psi	1600000 psi	1600000 psi	1600000 psi	
F _{bE} =	2109 psi	6026 psi	1506 psi	1506 psi	
Slenderness Ratio:	< 50 OK	< 50 OK	< 50 OK	< 50 OK	
R _B =	18	11 4 F/h OV	21	21 4 F!h OV	
Bending:	< F'b OK	< F'b OK	< F'b OK	< F'b OK	
$M = w L^2/8 + P e/12 =$ $f_b = M/S =$	282 ft-lbs 447 psi	155 ft-lbs 123 psi	276 ft-lbs 438 psi	553 ft-lbs 877 psi	
$T_b = \frac{VV/S}{S}$	8 in ³	123 psi 15 in³	8 in ³	877 psi 8 in ³	
Shear:	< F'v OK	< F'v OK	< F'v OK	< F'v OK	
V = w L/2 =	100 lbs	39 lbs	70 lbs	140 lbs	
f _v = 1.5 V/A =	18 psi	4 psi	13 psi	26 psi	
A =	8 in²	17 in²	8 in²	8 in ²	
Compression:	<u>< F'c OK</u>	<u>< F'c OK</u>	<u>< F'c OK</u>	<u>< F'c OK</u>	
$f_c = P/A =$	439 psi	285 psi	202 psi	108 psi	
Compression (perp.):	<u>< F'c OK</u>	< F'c OK	< F'c OK	<u>< F'c OK</u>	
f _{c perp} = P/A =	439 psi	285 psi	202 psi	108 psi	
Combined:	< 1.0 OK	< 1.0 OK	< 1.0 OK	< 1.0 OK	
(fc/Fc)2 + {fb/[Fb(1-(fc/FcE)]} =	0.82	0.72	0.67	0.63	
Deflection:	<u>> 180 OK</u>	<u>> 180 OK</u>	<u>> 180 OK</u>	<u>> 180 OK</u>	
D = 22.5 w L ⁴ /E' I =	0.19 in	0.10 in	0.37 in	0.74 in	
I =	21 in^4 700	42 in^4 1817	21 in^4 510	21 in^4 255	
SPAN /					

09/18/23 Page 45 of 75

UN	UNBRACED WOOD COLUMN ALLOWABLE LOADS (kips)									
			Un	braced Heid	aht			Compression Perp. To		
Column Type	8'	10'	12'	14'	16'	18'	20'	Grain		
(2) 2x4 DF #2	4.50	3.00	2.10	SR	SR	SR	SR	6.50		
(3) 2x4 DF #2	8.80	5.90	4.20	3.20	SR	SR	SR	9.80		
4x4 DF #2	7.00	4.60	3.30	2.40	SR	SR	SR	7.60		
(2) 2x6 DF #2	7.20	4.70	3.30	SR	SR	SR	SR	10.30		
(3) 2x6 DF #2	20.40	14.70	10.70	8.00	6.20	4.90	SR	15.40		
6x6 DF #2	18.00	15.70	13.00	10.50	8.50	6.90	5.70	18.90		
6x8 DF #2	24.50	21.40	17.80	14.30	11.60	9.40	7.80	25.70		
6x10 DF #2	31.40	27.10	22.50	18.20	14.70	12.00	9.90	32.60		
8x8 DF #2	36.60	34.60	31.90	28.50	24.90	21.30	18.20	35.20		
8x10 DF #2	46.30	43.90	40.40	36.20	31.50	27.00	23.10	44.50		
8x12 DF #2	56.20	53.10	49.00	43.80	38.10	32.70	28.00	53.40		
10x10 DF #2	60.50	58.80	56.50	53.40	49.60	45.20	40.50	56.40		

09/18/23 Page 46 of 75

Brace condition:

Steel Column Project File: 05 Beams.ec6

LIC# : KW-06013353, Build:20.23.05.25 SNAKE RIVER ENGINEERING (c) ENERCALC INC 1983-2023

DESCRIPTION: --None--

Code References

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16

Load Combinations Used: IBC 2018

General Information

Steel Section Name : HSS7x5x5/16 Overall Column Height 16 ft
Analysis Method : Top & Bottom Fixity Top & Bottom Pinned

Steel Stress Grade

Fy: Steel Yield 36.0 ksi Fully braced against buckling ABOUT X-X Axis

E : Elastic Bending Modulus 29,000.0 ksi Unbraced Length for buckling ABOUT Y-Y Axis = 10 ft, K = 1.0

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Column self weight included : 373.440 lbs * Dead Load Factor AXIAL LOADS . . .

Axial Load at 16.0 ft, D = 14.020, L = 7.0, S = 65.630 k

DESIGN SUMMARY

Bending & Shear Check Results			
PASS Max. Axial+Bending Stress Ratio =	0.9424 : 1	1 Maximum Load Reactions	
Load Combination	+D+S	Top along X-X 0.0 k	
Location of max.above base	0.0 ft	Bottom along X-X 0.0 k	
At maximum location values are		Top along Y-Y 0.0 k	
Pa : Axial	80.023 k	Bottom along Y-Y 0.0 k	
Pn / Omega : Allowable	84.912 k		
Ma-x : Applied	0.0 k-fi	-ft Maximum Load Deflections	
Mn-x / Omega : Allowable	26.946 k-f	-ft Along Y-Y 0.0 in at 0.0 ft at for load combination :	oove base
Ma-y : Applied	0.0 k-f		
Mn-y / Omega : Allowable	21.377 k-fr	-ft Along X-X 0.0 in at 0.0 ft at	oove base
		for load combination :	
PASS Maximum Shear Stress Ratio	0.0 : 1	1	
Load Combination	0.0		
Location of max.above base At maximum location values are	0.0 ft		
Va : Applied	0.0 k		
Vn / Omega : Allowable	0.0 k		

Load Combination Results

Maximum Axial + Bending Stress Ratio								Maximum	Shear F	Ratios
Load Combination	Stress Ratio	Status	Location	Cbx	Cby	KxLx/Ry I	KyLy/Rx	Stress Ratio	Status	Location
D Only	0.170	PASS	0.00 ft	1.00	1.00	0.00	96.48	0.000	PASS	0.00 ft
+D+L	0.252	PASS	0.00 ft	1.00	1.00	0.00	96.48	0.000	PASS	0.00 ft
+D+S	0.942	PASS	0.00 ft	1.00	1.00	0.00	96.48	0.000	PASS	0.00 ft
+D+0.750L	0.231	PASS	0.00 ft	1.00	1.00	0.00	96.48	0.000	PASS	0.00 ft
+D+0.750L+0.750S	0.811	PASS	0.00 ft	1.00	1.00	0.00	96.48	0.000	PASS	0.00 ft
+0.60D	0.102	PASS	0.00 ft	1.00	1.00	0.00	96.48	0.000	PASS	0.00 ft

Maximum Reactions Note: Only non-zero reactions are listed.

	Axial Reaction	X-X Axis I	Reaction	k	Y-Y Axis Reaction	Mx - End M	loments k-ft	My - End	Moments
Load Combination	@ Base	@ Base	@ Top		@ Base @ Top	@ Base	@ Top	@ Base	@ Top
D Only	14.393								
+D+L	21.393								
+D+S	80.023								
+D+0.750L	19.643								
+D+0.750L+0.750S	68.866								
+0.60D	8.636								
L Only	7.000								
S Only	65.630								

09/18/23 Page 47 of 75

Steel Column Project File: 05 Beams.ec6

LIC#: KW-06013353, Build:20.23.05.25 SNAKE RIVER ENGINEERING (c) ENERCALC INC 1983-2023

DESCRIPTION: --None--

Extreme Reactions

	Α	xial Reaction	X-X Axis	Reaction	k	Y-Y Axis Reaction	Mx - E	nd Moment	s k-ft	My - End	Moments
Item	Extreme Value	@ Base	@ Base	@ Top		@ Base @ Top	@ B	ase @ T	ор	@ Base	@ Top
Axial @ Base	Maximum	80.023									
"	Minimum	7.000									
Reaction, X-X Axis Base	e Maximum	14.393									
"	Minimum	14.393									
Reaction, Y-Y Axis Base	e Maximum	14.393									
"	Minimum	14.393									
Reaction, X-X Axis Top	Maximum	14.393									
"	Minimum	14.393									
Reaction, Y-Y Axis Top	Maximum	14.393									
"	Minimum	14.393									
Moment, X-X Axis Base	Maximum	14.393									
"	Minimum	14.393									
Moment, Y-Y Axis Base	Maximum	14.393									
"	Minimum	14.393									
Moment, X-X Axis Top	Maximum	14.393									
"	Minimum	14.393									
Moment, Y-Y Axis Top	Maximum	14.393									
"	Minimum	14.393									
Maximum Deflection	ns for Load (Combination	าร								
Load Combination	Max.	Deflection in X	dir Dist	ance	M	ax. Deflection in Y dir	Dista	nce			

Load Combination	Max. Deflection in X dir	Distance	Max. Deflection in Y dir	Distance
D Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+L	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+0.750L	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+0.750L+0.750S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+0.60D	0.0000 in	0.000 ft	0.000 in	0.000 ft
L Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
S Only	0.0000 in	0.000 ft	0.000 in	0.000 ft

Steel Section Properties: HSS7x5x5/16

Depth	=	7.000 in	l xx	=	43.00 in^4	J	=	52.100 in^4	
Design Thick	=	0.291 in	S xx	=	12.30 in^3	Cw	=	18.30 in^6	
Width	=	5.000 in	R xx	=	2.590 in				
Wall Thick	=	0.313 in	Zx	=	15.000 in^3				
Area	=	6.430 in^2	l yy	=	25.500 in^4	С	=	18.300 in^3	
Weight	=	23.340 plf	S yy	=	10.200 in^3				
			R yy	=	1.990 in				
			Zy	=	11.900 in^3				

Ycg 0.000 in

> 09/18/23 Page 48 of 75

Steel Column Project File: 05 Beams.ec6

LIC#: KW-06013353, Build:20.23.05.25 SNAKE RIVER ENGINEERING (c) ENERCALC INC 1983-2023

DESCRIPTION: --None--

Sketches

09/18/23 Page 49 of 75

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof				
Roof Dead	(17psf)	(12.5ft)	=	213plf
Snow Live	(150psf)	(12.5ft)	=	1875plf

Upper Floor				
Floor Dead	(12psf)	(.0ft)	=	plf
Floor Live	(40psf)	(.0ft)	=	plf

Deck Floor				
Floor Dead	(12psf)	(.0ft)	=	plf
Snow Live	(150psf)	(.0ft)	=	plf

Misc				
Wall Load:	(18psf)	(16.0ft)	=	296plf
Conc Stem:	(145pcf)	(4 x .5ft)	=	254plf
Misc Load:	(.0ft)	(.0ft) (.0ft)	=	plf

2637plf

Use Footing Width:	24	Х	8	in
W/		(2)	#4	Cont.

09/18/23 Page 50 of 75

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof				
Roof Dead	(17psf)	(4.0ft)	=	68plf
Snow Live	(150psf)	(4.0ft)	=	600plf

Upper Floor				
Floor Dead	(12psf)	(1.0ft)	=	12plf
Floor Live	(40psf)	(1.0ft)	=	40plf

Deck Floor				
Floor Dead	(12psf)	(.0ft)	=	plf
Snow Live	(150psf)	(.0ft)	=	plf

Misc				
Wall Load:	(18psf)	(27.0ft)	=	499plf
Conc Stem:	(145pcf)	(2 x .5ft)	=	145plf
Misc Load:	(.0ft)	(.0ft) (.0f	t) =	plf

1324plf

Use Footing Width:	12	Х	8	in
W/		(2)	#4	Cont.

09/18/23 Page 51 of 75

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof				
Roof Dead	(17psf)	(14.5ft)	=	247plf
Snow Live	(150psf)	(14.5ft)	=	2175plf

Upper Floor				
Floor Dead	(12psf)	(.0ft)	=	plf
Floor Live	(40psf)	(.0ft)	=	plf

Deck Floor				
Floor Dead	(12psf)	(.0ft)	=	plf
Snow Live	(150psf)	(.0ft)	=	plf

Misc				
Wall Load:	(18psf)	(16.0ft)	=	296plf
Conc Stem:	(145pcf)	(2 x .5ft)	=	145plf
Misc Load:	(.0ft)	(.0ft) (.0ft)	=	plf

2862plf

Use Footing Width:	30	Х	10	in
W/		(3)	#4	Cont.

09/18/23 Page 52 of 75

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof				
Roof Dead	(17psf)	(24.3ft)	=	412plf
Snow Live	(150psf)	(24.3ft)	=	3638plf

Upper Floor				
Floor Dead	(12psf)	(10.0ft)	=	120plf
Floor Live	(40psf)	(10.0ft)	=	400plf

Deck Floor				
Floor Dead	(12psf)	(.0ft)	=	plf
Snow Live	(150psf)	(.0ft)	=	plf

Misc				
Wall Load:	(18psf)	(27.0ft)	=	499plf
Conc Stem:	(145pcf)	(x .5ft	=	plf
Misc Load:	(.0ft)	(.0ft) ((.0ft) =	plf

4669plf

Use Footing Width:	42	Х	10	in
W/		(4)	#4	Cont.

09/18/23 Page 53 of 75

PAD FOOTING DESIGN CAPACITIES:

Soil Bearing (1500 psf)							
Dime	nsion	s (Inches)	Capacity	# of Bars	Min. Col. Size		
72 x	72	x 12	47,500 lbs	10	3.5 sq.		
66 x	66	x 12	39,750 lbs	8	3.5 sq.		
60 x	60	x 10	33,450 lbs	6	3.5 sq.		
54 x	54	x 10	27,000 lbs	5	3.5 sq.		
48 x	48	x 8	21,500 lbs	4	3.5 sq.		
42 x	42	x 8	16,500 lbs	4	3.5 sq.		
36 x	36	x 8	12,000 lbs	4	3.5 sq.		
30 x	30	x 8	8,350 lbs	3	3.5 sq.		
24 x	24	x 8	5,300 lbs	2	3.5 sq.		
18 x	18	x 8	2,900 lbs	2	3.5 sq.		

Bars to be 3 1/2" from bottom of pad. Evenly space in both directions.

CONT. FOOTING DESIGN CAPACITIES:

Soil Bearing (1500 psf)							
Dimen	sions	s (Inches)	Capacity	# of Bars			
60	Х	10	6,850 plf	6			
54	Х	10	6,200 plf	5			
48	Х	10	5,500 plf	4			
42	Х	10	4,750 plf	4			
36	Х	10	4,000 plf	3			
30	Х	10	3,400 plf	3			
24	Х	8	2,800 plf	2			
18	Х	8	2,100 plf	2			
16	Х	8	1,850 plf	2			
12	Х	8	1,350 plf	2			

Bars to be 3 1/2" from bottom of footing.

09/18/23 Page 54 of 75

General Footing

LIC#: KW-06013353, Build:20.23.05.25 **DESCRIPTION:** --None--

SNAKE RIVER ENGINEERING

Project File: 05 Beams.ec6
(c) ENERCALC INC 1983-2023

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16

Load Combinations Used: IBC 2018

General Information

Material Properties				Soil Design Values		
f'c : Concrete 28 day strength	=	2	2.50 ksi	Allowable Soil Bearing	=	1.50 ksf
fy : Rebar Yield	=	6	0.0 ksi	Soil Density	=	110.0 pcf
Ec : Concrete Elastic Modulus	=	,	2.0 ksi	Increase Bearing By Footing Weight	=	No .
Concrete Density	=	14	5.0 pcf	Soil Passive Resistance (for Sliding)	=	250.0 pcf
_Φ Values Flexure	=	0	.90	Soil/Concrete Friction Coeff.	=	0.30
Shear	=	0.7	750	Increases based on footing Depth		
Analysis Settings				Footing base depth below soil surface	=	ft
Min Steel % Bending Reinf.		=		Allow press. increase per foot of depth	=	ksf
Min Allow % Temp Reinf.		=	0.00180	when footing base is below	=	ft
Min. Overturning Safety Factor		=	1.0 : 1	o		
Min. Sliding Safety Factor		=	1.0 : 1	Increases based on footing plan dimension	on	
Add Ftg Wt for Soil Pressure		:	Yes	Allowable pressure increase per foot of de	epth	
Use ftg wt for stability, moments & shea	rs	:	Yes		=	ksf
Add Pedestal Wt for Soil Pressure			No	when max. length or width is greater than		
					=	ft
Use Pedestal wt for stability, mom & she	aı	•	No			

Dimensions

Width parallel to X-X Axis	=	8.0 ft
Length parallel to Z-Z Axis	=	8.0 ft
Footing Thickness	=	18.0 in

Pedestal dimensions		
px : parallel to X-X Axis	=	in
pz : parallel to Z-Z Axis	=	in
Height	_	in
Rebar Centerline to Edge of	Concrete	
at Bottom of footing	=	3.0 in

Reinforcing

Bars parallel to X-X Axis

Number of Bars	=		16
Reinforcing Bar Size	=	#	4
Bars parallel to Z-Z Axis			
Number of Bars	=		16
Reinforcing Bar Size	=	#	4
Bandwidth Distribution Ch	eck (ACI 1	5.4.4.2)	
Direction Requiring Closer	Separation		
			n/a
# Bars required within zone	:		n/a
# Bars required on each sid	e of zone		n/a

Applied Loads

		D	Lr	L	s	W	E	Н
P : Column Load OB : Overburden	= =	14.020		7.0	65.630			k ksf
M-xx M-zz	= =							k-ft k-ft
V-x	= -							k
V-z	=							k

09/18/23 Page 55 of 75

General Footing

SNAKE RIVER ENGINEERING

LIC# : KW-06013353, Build:20.23.05.25 **DESCRIPTION: --None--**

(c) ENERCALC INC 1983-2023

Project File: 05 Beams.ec6

DESIGN SUMMARY

_			$\overline{}$	
	ACIA	ın	()	ĸ
	esig	ш	U	м

	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.9747	Soil Bearing	1.462 ksf	1.50 ksf	+D+S about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.5990	Z Flexure (+X)	15.667 k-ft/ft	26.153 k-ft/ft	+1.20D+0.50L+1.60S
PASS	0.5990	Z Flexure (-X)	15.667 k-ft/ft	26.153 k-ft/ft	+1.20D+0.50L+1.60S
PASS	0.5990	X Flexure (+Z)	15.667 k-ft/ft	26.153 k-ft/ft	+1.20D+0.50L+1.60S
PASS	0.5990	X Flexure (-Z)	15.667 k-ft/ft	26.153 k-ft/ft	+1.20D+0.50L+1.60S
PASS	0.3946	1-way Shear (+X)	29.592 psi	75.0 psi	+1.20D+0.50L+1.60S
PASS	0.3946	1-way Shear (-X)	29.592 psi	75.0 psi	+1.20D+0.50L+1.60S
PASS	0.3946	1-way Shear (+Z)	29.592 psi	75.0 psi	+1.20D+0.50L+1.60S
PASS	0.3946	1-way Shear (-Z)	29.592 psi	75.0 psi	+1.20D+0.50L+1.60S
PASS	0.9046	2-way Punching	135.693 psi	150.0 psi	+1.20D+0.50L+1.60S

Detailed Results

Soil Bearing

Rotation Axis &		Xecc	Zecc	Actual	Soil Bearing S	Stress @ Loc	ation	Actual / Allow
Load Combination	Gross Allowable	(i	in)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.50	n/a	0.0	0.4366	0.4366	n/a	n/a	0.291
X-X, +D+L	1.50	n/a	0.0	0.5459	0.5459	n/a	n/a	0.364
X-X, +D+S	1.50	n/a	0.0	1.462	1.462	n/a	n/a	0.975
X-X, +D+0.750L	1.50	n/a	0.0	0.5186	0.5186	n/a	n/a	0.346
X-X, +D+0.750L+0.750S	1.50	n/a	0.0	1.288	1.288	n/a	n/a	0.859
X-X, +0.60D	1.50	n/a	0.0	0.2619	0.2619	n/a	n/a	0.175
Z-Z, D Only	1.50	0.0	n/a	n/a	n/a	0.4366	0.4366	0.291
Z-Z, +D+L	1.50	0.0	n/a	n/a	n/a	0.5459	0.5459	0.364
Z-Z, +D+S	1.50	0.0	n/a	n/a	n/a	1.462	1.462	0.975
Z-Z, +D+0.750L	1.50	0.0	n/a	n/a	n/a	0.5186	0.5186	0.346
Z-Z, +D+0.750L+0.750S	1.50	0.0	n/a	n/a	n/a	1.288	1.288	0.859
Z-Z, +0.60D	1.50	0.0	n/a	n/a	n/a	0.2619	0.2619	0.175

Overturning Stability

Rotation Axis & Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
E " 11 NOO 1 '				

Footing Has NO Overturning

All units k **Sliding Stability**

Force Application Axis				
Load Combination	Sliding Force	Resisting Force	Stability Ratio	Status
Footing Has NO Sliding				

Footing Flexure

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D	2.454	+Z	Bottom	0.3888	AsMin	0.40	26.153	oĸ
X-X, +1.40D	2.454	-Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+1.60L	3.503	+Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+1.60L	3.503	-Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+1.60L+0.50S	7.605	+Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+1.60L+0.50S	7.605	-Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+0.50L	2.541	+Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+0.50L	2.541	-Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D	2.103	+Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D	2.103	-Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+0.50L+1.60S	15.667	+Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+0.50L+1.60S	15.667	-Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+1.60S	15.229	+Z	Bottom	0.3888	AsMin	0.40	26.153	OK
09/18/23							Page 56 of 75	5

General Footing LIC#: KW-06013353, Build:20.23.05.25

LIC# : KW-06013353, Build:20.23.05.25 **DESCRIPTION:** --None--

SNAKE RIVER ENGINEERING

(c) ENERCALC INC 1983-2023

Project File: 05 Beams.ec6

Footing Flexure

Flexure Axis & Load Combination	n Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. A in^2	As A	ctual As in^2	Phi*Mn k-ft	Status
X-X, +1.20D+1.60S	15.229	-Z	Bottom	0.3888	AsMin		0.40	26.153	ок
X-X, +1.20D+0.50L+0.50S	6.642	+Z	Bottom	0.3888	AsMin		0.40	26.153	OK
X-X, +1.20D+0.50L+0.50S	6.642	-Z	Bottom	0.3888	AsMin		0.40	26.153	OK
X-X, +1.20D+0.50L+0.70S	8.283	+Z	Bottom	0.3888	AsMin		0.40	26.153	OK
X-X, +1.20D+0.50L+0.70S	8.283	-Z	Bottom	0.3888	AsMin		0.40	26.153	OK
X-X, +0.90D	1.577	+Z	Bottom	0.3888	AsMin		0.40	26.153	OK
X-X, +0.90D	1.577	-Z	Bottom	0.3888	AsMin		0.40	26.153	OK
Z-Z, +1.40D	2.454	-X	Bottom	0.3888	AsMin		0.40	26.153	OK
Z-Z, +1.40D	2.454	+X	Bottom	0.3888	AsMin		0.40	26.153	OK
Z-Z, +1.20D+1.60L	3.503	-X	Bottom	0.3888	AsMin		0.40	26.153	OK
Z-Z, +1.20D+1.60L	3.503	+X	Bottom	0.3888	AsMin		0.40	26.153	OK
Z-Z, +1.20D+1.60L+0.50S	7.605	-X	Bottom	0.3888	AsMin		0.40	26.153	OK
Z-Z, +1.20D+1.60L+0.50S	7.605	+X	Bottom	0.3888	AsMin		0.40	26.153	OK
Z-Z, +1.20D+0.50L	2.541	-X	Bottom	0.3888	AsMin		0.40	26.153	OK
Z-Z, +1.20D+0.50L	2.541	+X	Bottom	0.3888	AsMin		0.40	26.153	OK
Z-Z, +1.20D	2.103	-X	Bottom	0.3888	AsMin		0.40	26.153	OK
Z-Z, +1.20D	2.103	+X	Bottom	0.3888	AsMin		0.40	26.153	OK
Z-Z, +1.20D+0.50L+1.60S	15.667	-X	Bottom	0.3888	AsMin		0.40	26.153	OK
Z-Z, +1.20D+0.50L+1.60S	15.667	+X	Bottom	0.3888	AsMin		0.40	26.153	OK
Z-Z, +1.20D+1.60S	15.229	-X	Bottom	0.3888	AsMin		0.40	26.153	OK
Z-Z, +1.20D+1.60S	15.229	+X	Bottom	0.3888	AsMin		0.40	26.153	OK
Z-Z, +1.20D+0.50L+0.50S	6.642	-X	Bottom	0.3888	AsMin		0.40	26.153	OK
Z-Z, +1.20D+0.50L+0.50S	6.642	+X	Bottom	0.3888	AsMin		0.40	26.153	OK
Z-Z, +1.20D+0.50L+0.70S	8.283	-X	Bottom	0.3888	AsMin		0.40	26.153	OK
Z-Z, +1.20D+0.50L+0.70S	8.283	+X	Bottom	0.3888	AsMin		0.40	26.153	OK
Z-Z, +0.90D	1.577	-X	Bottom	0.3888	AsMin		0.40	26.153	OK
Z-Z, +0.90D	1.577	+X	Bottom	0.3888	AsMin		0.40	26.153	OK
One Way Shear									
Load Combination	Vu @ -X	Vu @ +>	√ Vu @	Z Vu @	D +Z	Vu:Max	Phi Vn	Vu / Phi*Vn	Status

Load Combination	Vu @ -X	Vu @ +X	Vu @ -Z	Vu @ +Z	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
+1.40D	4.63 ps	i 4.63 ps	i 4.63 ps	i 4.63 psi	4.63 psi	75.00 ps	si 0.06	OK
+1.20D+1.60L	6.62 ps	i 6.62 ps	i 6.62 ps	i 6.62 psi	6.62 psi	75.00 ps	si 0.09	OK
+1.20D+1.60L+0.50S	14.37 ps	i 14.37 ps	i 14.37 ps	i 14.37 psi	14.37 psi	75.00 ps	si 0.19	OK
+1.20D+0.50L	4.80 ps	i 4.80 ps	i 4.80 ps	i 4.80 psi	4.80 psi	75.00 ps	si 0.06	OK
+1.20D	3.97 ps	i 3.97 ps	i 3.97 ps	i 3.97 psi	3.97 psi	75.00 ps	si 0.05	OK
+1.20D+0.50L+1.60S	29.59 ps	i 29.59 ps	i 29.59 ps	i 29.59 psi	29.59 psi	75.00 ps	si 0.39	OK
+1.20D+1.60S	28.77 ps	i 28.77 ps	i 28.77 ps	i 28.77 psi	28.77 psi	75.00 ps	si 0.38	OK
+1.20D+0.50L+0.50S	12.55 ps	i 12.55 ps	i 12.55 ps	i 12.55 psi	12.55 psi	75.00 ps	si 0.17	OK
+1.20D+0.50L+0.70S	15.65 ps	i 15.65 ps	i 15.65 ps	i 15.65 psi	15.65 psi	75.00 ps	si 0.21	OK
+0.90D	2.98 ps	i 2.98 ps	i 2.98 ps	i 2.98 psi	2.98 psi	75.00 ps	si 0.04	OK
Two-Way "Punching" Shear							All units	k

Load Combination	Vu	Phi*Vn	Vu / Phi*Vn	Status
+1.40D	21.25 psi	150.00psi	0.1417	OK
+1.20D+1.60L	30.34 psi	150.00 psi	0.2023	OK
+1.20D+1.60L+0.50S	65.87 psi	150.00 psi	0.4391	OK
+1.20D+0.50L	22.00 psi	150.00 psi	0.1467	OK
+1.20D	18.22 psi	150.00 psi	0.1214	OK
+1.20D+0.50L+1.60S	135.69 psi	150.00 psi	0.9046	OK
+1.20D+1.60S	131.90 psi	150.00 psi	0.8794	OK
+1.20D+0.50L+0.50S	57.53 psi	150.00 psi	0.3835	OK
+1.20D+0.50L+0.70S	71.74 psi	150.00 psi	0.4783	OK
+0.90D	13.66 psi	150.00 psi	0.09107	OK

09/18/23 Page 57 of 75

Cantilevered Retaining Wall

LIC# : KW-06013353, Build:20.23.05.25 **DESCRIPTION:** FA ADU

SNAKE RIVER ENGINEERING

Project File: 05 Beams.ec6
(c) ENERCALC INC 1983-2023

Code Reference:

Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

Criteria

Retained Height	=	12.33 ft
Wall height above soil	=	0.67 ft
Slope Behind Wall	=	0.00
Height of Soil over Toe	=	0.00 in
Water table above		
bottom of footing	=	0.0 ft

Surcharge Loads

Surcharge Over Heel = 0.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe = 0.0 Used for Sliding & Overturning

Axial Load Applied to Stem

Axial Dead Load	=	686.0 lbs
Axial Live Load	=	3,700.0 lbs
Axial Load Eccentricity	=	0.0 in

Soil Data

Allow Soil Bearing Equivalent Fluid Pressure	= Meth	1,500.0 psf
Active Heel Pressure	=	35.0 psf/ft
	=	
Passive Pressure	=	250.0 psf/ft
Soil Density, Heel	=	110.00 pcf
Soil Density, Toe	=	110.00 pcf
Footing Soil Friction	=	0.400
Soil height to ignore for passive pressure	=	12.00 in

Lateral Load Applied to Stem

Lateral Load Height to Top Height to Bottom	= = =	0.0 #/ft 0.00 ft 0.00 ft
Load Type	=	Wind (W) (Strength Level)
Wind on Exposed Ster (Strength Level)	m ₌	0.0 psf

Adjacent Footing Load

Adjacent Footing Load	=	0.0 lbs
Footing Width	=	0.00 ft
Eccentricity	=	0.00 in
Wall to Ftg CL Dist	=	0.00 ft
Footing Type		Spread Footing
Base Above/Below Soil at Back of Wall	=	0.0 ft
Poisson's Ratio	=	0.300

09/18/23 Page 58 of 75

Cantilevered Ret	aining	Wall					Project File	e: 05 Beams	s.ec6
LIC#: KW-06013353, Build:20. DESCRIPTION: FA			SNAKE RIVER ENGINEER	RING			(c) ENERO	CALC INC 198	33-2023
Design Summary			Stem Construction		Bottom				
Wall Stability Ratios Overturning Slab Resis Global Stability Total Bearing Loadresultant ecc. Eccentricity with Soil Pressure @ Toe Soil Pressure @ Heel Allowable Soil Pressure Less ACI Factored @ Toe ACI Factored @ Toe Footing Shear @ Toe Footing Shear @ Heel Allowable Sliding Calcs Lateral Sliding Force	= 'i = 'i min middle = = = s Than Alk = = = = = =	0.96 8,268 lbs 1.26 in third 1,151 psf OK 1,397 psf OK 1,500 psf	Design Height Above Ftg Wall Material Above "Ht" Design Method Thickness Rebar Size Rebar Spacing Rebar Placed at Design Data fb/FB + fa/Fa Total Force @ Section Service Level Strength Level MomentActual Service Level Strength Level MomentAllowable ShearActual Service Level Strength Level MomentAllowable ShearActual	= = = = = = = = = = = = = = = = = = =	Stem OK 0.00 Concrete SD 10.00 # 5 6.00 Edge 0.841 4,256.8 17,495.5 20,802.0	SD	SD	SD	SD
Vertical component of activ NOT considered in the calcon Load Factors Building Code Dead Load Live Load Earth, H Wind, W Seismic, E			Anet (Masonry) Wall Weight Rebar Depth 'd' Masonry Data f'm Fs Solid Grouting Modular Ratio 'n' Equiv. Solid Thick. Masonry Block Type Masonry Design Method Concrete Data f'c Fy	in2 = psf = in = psi = psi = = psi =	125.0 8.19 ASD 2,500.0 60,000.0				

09/18/23 Page 59 of 75

Cantilevered Retaining Wall

LIC# : KW-06013353, Build:20.23.05.25 SNAKE RIVER ENGINEERING

DESCRIPTION: FA ADU

(c) ENERCALC INC 1983-2023

Project File: 05 Beams.ec6

Concrete Stem Rebar Area Details

Bottom Stem <u>Vertical Reinforcing</u> <u>Horizontal Reinforcing</u>

As (based on applied moment): 0.4941 in2/ft

(4/3) * As: 0.6588 in2/ft Min Stem T&S Reinf Area 3.120 in2

200bd/fy: 200(12)(8.1875)/60000: 0.3275 in2/ft Min Stem T&S Reinf Area per ft of stem Height: 0.240 in2/ft

0.0018bh : 0.0018(12)(10) : 0.216 in2/ft Horizontal Reinforcing Options : One layer of : Two layers of :

 Required Area :
 0.4941 in2/ft
 #4@ 10.00 in
 #4@ 20.00 in

 Provided Area :
 0.62 in2/ft
 #5@ 15.50 in
 #5@ 31.00 in

 Maximum Area :
 1.1092 in2/ft
 #6@ 22.00 in
 #6@ 44.00 in

Footing Data

Toe Width	= 4.83 ft
Heel Width	= 1.66
Total Footing Width	= 6.49
Footing Thickness	= 14.00 in
Key Width	= 0.00 in
Key Depth	= 0.00 in
Key Distance from Too	e = 0.00 ft
f'c = 2,500 psi Footing Concrete Dens	Fy = 60,000 psi sity = 150.00 pcf
Min. As %	= 0.0018
Cover @ Top 2.00	0 @ Btm.= 3.00 in

Footing Design Results

		Toe	<u>Heel</u>
Factored Pressure	=	1,611	1,956 psf
Mu' : Upward	=	19,790	712 ft-#
Mu' : Downward	=	2,450	628 ft-#
Mu: Design	=	17,340 OK	-84 ft-#
phiMn	=	21,219	23,311 ft-#
Actual 1-Way Shear	=	47.28	0.58 psi
Allow 1-Way Shear	=	75.00	75.00 psi
Toe Reinforcing	=	# 5 @ 8.00 in	
Heel Reinforcing	=	# 5 @ 8.00 in	
Key Reinforcing	=	None Spec'd	
Footing Torsion, Tu		=	0.00 ft-lbs
Footing Allow. Torsio	n, p	ohi Tu =	0.00 ft-lbs

If torsion exceeds allowable, provide supplemental design for footing torsion.

Other Acceptable Sizes & Spacings

Toe: #4@ 5.71 in, #5@ 8.85 in, #6@ 12.57 in, #7@ 17.14 in, #8@ 22.57 in, #9@ 28.57 in, #10@ 36.28 in

Heel: #4@ 7.93 in, #5@ 12.30 in, #6@ 17.46 in, #7@ 23.80 in, #8@ 31.34 in, #9@

39.68 in, #10@ 50.39 in

Key: No key defined

Min footing T&S reinf Area 1.96 in2
Min footing T&S reinf Area per foot 0.30 in2 /ft

If one layer of horizontal bars: If two layers of horizontal bars:

#4@ 7.94 in #4@ 15.87 in #5@ 12.30 in #5@ 24.60 in #6@ 17.46 in #6@ 34.92 in

09/18/23 Page 60 of 75

Cantilevered Retaining Wall

LIC# : KW-06013353, Build:20.23.05.25 SNAKE RIVER ENGINEERING (c) ENERCALC INC 1983-2023

DESCRIPTION: FA ADU

Summary of Overturning & Resisting Forces & Moments

		OV	ERTURNING	i		RE	SISTING	
Item		Force lbs	Distance ft	Moment ft-#		Force lbs	Distance ft	Moment ft-#
HL Act Pres (ab water to	I)	3.187.8	4.50	14,341.6	Soil Over HL (ab. water tbl)	1,121.2	6.08	6,813.2
HL Act Pres (be water tb Hydrostatic Force	,	2,12112		. ,,	Soil Over HL (bel. water tbl) Water Table		6.08	6,813.2
Buoyant Force	=				Sloped Soil Over Heel =			
Surcharge over Heel	=				Surcharge Over Heel =			
Surcharge Over Toe	=				Adjacent Footing Load =			
Adjacent Footing Load	=				Axial Dead Load on Stem =	686.0	5.25	3,599.2
Added Lateral Load	=				* Axial Live Load on Stem =	3,700.0	5.25	19,412.7
Load @ Stem Above Soi	il =				Soil Over Toe =			
O	=				Surcharge Over Toe =			
					Stem Weight(s) =	1,625.0	5.25	8,525.8
					Earth @ Stem Transitions =			
Total	=	3,187.8	O.T.M. =	14,341.6	Footing Weight =	1,135.8	3.25	3,685.5
					Key Weight =			
Resisting/Overturning	_		=	1.58	Vert. Component =			
Vertical Loads used for	or Soil	l Pressure	= 8,268.	0 lbs	Total =	4,568.0 lb	s R.M.=	22,623.8
					* Axial live load NOT included in	n total displaye	d, or used fo	r overturning

 ^{*} Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Project File: 05 Beams.ec6

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus 250.0 pci Horizontal Defl @ Top of Wall (approximate only) 0.000 in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,

because the wall would then tend to rotate into the retained soil.

09/18/23 Page 61 of 75

Cantilevered Retaining Wall

Project File: 05 Beams.ec6
SNAKE RIVER ENGINEERING (c) ENERCALC INC 1983-2023

LIC#: KW-06013353, Build:20.23.05.25 **DESCRIPTION:** FA ADU

Rebar Lap & Embedment Lengths Information

Stem Design Segment: Bottom

Stem Design Height: 0.00 ft above top of footing

Lap Splice length for #5 bar specified in this stem design segment (25.4.2.3a) = 23.40 in Development length for #5 bar specified in this stem design segment = 18.00 in

Hooked embedment length into footing for #5 bar specified in this stem design segment = 10.50 in As Provided = 0.6200 in2/ft As Required = 0.4941 in2/ft

09/18/23 Page 62 of 75

Cantilevered Retaining Wall

Project File: 05 Beams.ec6

LIC#: KW-06013353, Build:20.23.05.25

SNAKE RIVER ENGINEERING

(c) ENERCALC INC 1983-2023

DESCRIPTION: FA ADU

09/18/23 Page 63 of 75

Cantilevered Retaining Wall

LIC#: KW-06013353, Build:20.23.05.25 SNAKE RIVER ENGINEERING

DESCRIPTION: FB ADU

Project File: 05 Beams.ec6

(c) ENERCALC INC 1983-2023

Code Reference:

Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

Criteria

Retained Height	=	12.33 ft
Wall height above soil	=	0.67 ft
Slope Behind Wall	=	0.00
Height of Soil over Toe	=	0.00 in
Water table above		
bottom of footing	=	0.0 ft

Surcharge Loads

Surcharge Over Heel = 0.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe = 0.0 Used for Sliding & Overturning

Axial Load Applied to Stem

Axial Dead Load	=	376.0 lbs
Axial Live Load	=	640.0 lbs
Axial Load Eccentricity	=	0.0 in

Soil Data

Allow Soil Bearing	=	1,500.0	psf
Equivalent Fluid Pressure Active Heel Pressure	=		psf/ft
	=		
Passive Pressure	=	250.0	psf/ft
Soil Density, Heel	=	110.00	pcf
Soil Density, Toe	=	110.00	pcf
Footing Soil Friction	=	0.400	
Soil height to ignore for passive pressure	=	12.00	in

Lateral Load Applied to Stem

Lateral Load Height to Top Height to Bottom	= = =	0.0 #/ft 0.00 ft 0.00 ft
Load Type	=	Wind (W) (Strength Level)
Wind on Exposed Ste (Strength Level)	m ₌	0.0 psf

Adjacent Footing Load

Adjacent Footing Load	=	0.0 lbs
Footing Width	=	0.00 ft
Eccentricity	=	0.00 in
Wall to Ftg CL Dist	=	0.00 ft
Footing Type		Spread Footing
Base Above/Below Soil at Back of Wall	=	0.0 ft
Poisson's Ratio	=	0.300

09/18/23 Page 64 of 75

Cantilevered Reta	ainii	ng Wall					Project File	e: 05 Beams	s.ec6
LIC#: KW-06013353, Build:20.			SNAKE RIVER ENGINEER	RING			(c) ENER	CALC INC 198	83-2023
DESCRIPTION: FB	ADU								
Design Summary			Stem Construction		Bottom				
			Design Height Above Ftg	 ft =	Stem OK 0.00				
Wall Stability Ratios			Wall Material Above "Ht"		Concrete				
Overturning	=	1.51 OK	Design Method	=	SD	SD	SD	SD	SD
Slab Resis	ts All S	Sliding!	Thickness	=	10.00				
Global Stability	=	0.96	Rebar Size	=	# 5				
2.2.2			Rebar Spacing	=	6.00				
Total Bearing Load	=	4,928 lbs	Rebar Placed at	=	Edge				
resultant ecc.	=	13.54 in	Design Data						
Eccentricity outsi			fb/FB + fa/Fa	=	0.841				
Soil Pressure @ Toe	=	1,492 psf OK	Total Force @ Section						
Soil Pressure @ Heel	=	0 psf OK	Service Level	lbs=					
Allowable Soil Pressure Less	=	1,500 psf	Strength Level	lbs=	4,256.8				
ACI Factored @ Toe	= =	2,089 psf	MomentActual						
ACI Factored @ Heel	=	2,069 psi 0 psf	Service Level	ft-# =					
Footing Shear @ Toe	=	40.2 psi OK	Strength Level	ft-# =	17,495.5				
Footing Shear @ Heel	=	10.3 psi OK	MomentAllowable	=	20,802.0				
Allowable	=	75.0 psi	ShearActual						
Allowable	_	75.0 psi	Service Level	psi =					
Sliding Calcs			Strength Level	psi =	43.3				
Lateral Sliding Force	=	3,187.8 lbs	ShearAllowable	psi =	75.0				
Eatoral Sharing 1 5155	_	0,107.0103	Anet (Masonry)	in2 =					
			Wall Weight	psf =	125.0				
			Rebar Depth 'd'	in =	8.19				
			пераг Берит и		0.19				
			Masonry Data						
Vertical component of active			f'm	psi =					
NOT considered in the calc	ulatior	n of soil bearing	Fs	psi =					
			Solid Grouting	=					
Load Factors			Modular Ratio 'n'	=					
Building Code		1 200	Equiv. Solid Thick.	=					
Dead Load		1.200	Masonry Block Type	=					
Live Load		1.600	Masonry Design Method	=	ASD				
Earth, H		1.600	Concrete Data		0.500.0				
Wind, W		1.600	fc	psi =	2,500.0				
Seismic, E		1.000	Fy	psi =	60,000.0				

09/18/23 Page 65 of 75

Cantilevered Retaining Wall

Project File: 05 Beams.ec6 LIC#: KW-06013353, Build:20.23.05.25

DESCRIPTION: FB ADU

SNAKE RIVER ENGINEERING

(c) ENERCALC INC 1983-2023

Concrete Stem Rebar Area Details

Bottom Stem Vertical Reinforcing Horizontal Reinforcing

As (based on applied moment): 0.4941 in2/ft

Min Stem T&S Reinf Area 3.120 in2 (4/3) * As: 0.6588 in2/ft

200bd/fy: 200(12)(8.1875)/60000: 0.3275 in2/ft Min Stem T&S Reinf Area per ft of stem Height: 0.240 in2/ft

0.0018bh: 0.0018(12)(10): 0.216 in2/ft Horizontal Reinforcing Options: Two layers of : One layer of :

Required Area: #4@ 20.00 in 0.4941 in2/ft #4@ 10.00 in Provided Area: 0.62 in2/ft #5@ 15.50 in #5@ 31.00 in Maximum Area: 1.1092 in2/ft #6@ 22.00 in #6@ 44.00 in

Footing Data

Toe Width Heel Width Total Footing Wid	dth	= = = -	5.00 ft 1.66 6.66	
Footing Thicknes	s	=	14.00 in	
Key Width Key Depth Key Distance fro	m Toe	= = =	0.00 in 0.00 in 0.00 ft	
fc = 2,500 Footing Concrete Min. As % Cover @ Top	psi l Density 2.00	=	60,000 psi 150.00 pcf 0.0018 3tm.= 3.00 ii	n

Footing Design Results

		<u>Toe</u>	<u>Heel</u>	
Factored Pressure	=	2,089	0 psf	
Mu' : Upward	=	19,524	24 ft-#	
Mu' : Downward	=	2,625	628 ft-#	
Mu: Design	=	16,899 OK	604 ft-#	OK
phiMn	=	21,219	23,311 ft-#	
Actual 1-Way Shear	=	40.16	10.33 psi	
Allow 1-Way Shear	=	75.00	75.00 psi	
Toe Reinforcing	=	# 5 @ 8.00 in		
Heel Reinforcing	=	# 5 @ 8.00 in		
Key Reinforcing	=	None Spec'd		
Footing Torsion, Tu		=	0.00 ft-lbs	
Footing Allow. Torsio	n, p	ohi Tu =	0.00 ft-lbs	

If torsion exceeds allowable, provide supplemental design for footing torsion.

Other Acceptable Sizes & Spacings

Toe: #4@ 5.71 in, #5@ 8.85 in, #6@ 12.57 in, #7@ 17.14 in, #8@ 22.57 in, #9@ 28.57 in, #10@ 36.28 in

Heel: #4@ 7.93 in, #5@ 12.30 in, #6@ 17.46 in, #7@ 23.80 in, #8@ 31.34 in, #9@

39.68 in, #10@ 50.39 in

Key: No key defined

Min footing T&S reinf Area 2.01 in2 in2 /ft Min footing T&S reinf Area per foot 0.30

If one layer of horizontal bars: If two layers of horizontal bars:

#4@ 7.94 in #4@ 15.87 in #5@ 12.30 in #5@ 24.60 in #6@ 17.46 in #6@ 34.92 in

09/18/23 Page 66 of 75

Cantilevered Retaining Wall

LIC# : KW-06013353, Build:20.23.05.25 SNAKE RIVER ENGINEERING (c) ENERCALC INC 1983-2023

DESCRIPTION: FB ADU

Summary of Overturning & Resisting Forces & Moments

		OV	ERTURNING	3		RE	RESISTING		
Item		Force lbs	Distance ft	Moment ft-#		Force lbs	Distance ft	Moment ft-#	
HL Act Pres (ab water tb	1)	3,187.8	4.50	14,341.6	Soil Over HL (ab. water tbl)	1,121.2	6.25	7,003.8	
HL Act Pres (be water tbl Hydrostatic Force	,	,		,-	Soil Over HL (bel. water tbl) Water Table		6.25	7,003.8	
Buoyant Force	=				Sloped Soil Over Heel =				
Surcharge over Heel	=				Surcharge Over Heel =				
Surcharge Over Toe	=				Adjacent Footing Load =				
Adjacent Footing Load	=				Axial Dead Load on Stem =	376.0	5.42	2,036.7	
Added Lateral Load	=				* Axial Live Load on Stem =	640.0	5.42	3,466.7	
Load @ Stem Above Soi	I =				Soil Over Toe =				
<u> </u>	=				Surcharge Over Toe =				
					Stem Weight(s) =	1,625.0	5.42	8,802.1	
					Earth @ Stem Transitions =				
Total	=	3,187.8	O.T.M. =	14,341.6	Footing Weight =	1,165.5	3.33	3,881.1	
					Key Weight =				
Resisting/Overturning	g Ratio)	=	1.51	Vert. Component =				
Vertical Loads used for	or Soil I	Pressure	= 4,927	.7 lbs	Total =	4,287.7 I	bs R.M.=	21,723.7	
					* Axial live load NOT included in	n total display	ed, or used fo	r overturning	

^{*} Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Project File: 05 Beams.ec6

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus 250.0 pci Horizontal Defl @ Top of Wall (approximate only) 0.081 in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,

because the wall would then tend to rotate into the retained soil.

09/18/23 Page 67 of 75

Cantilevered Retaining Wall

Project File: 05 Beams.ec6
SNAKE RIVER ENGINEERING (c) ENERCALC INC 1983-2023

LIC#: KW-06013353, Build:20.23.05.25 **DESCRIPTION:** FB ADU

Rebar Lap & Embedment Lengths Information

Stem Design Segment: Bottom

Stem Design Height: 0.00 ft above top of footing

Lap Splice length for #5 bar specified in this stem design segment (25.4.2.3a) = 23.40 in

Development length for #5 bar specified in this stem design segment = 18.00 in

Hooked embedment length into footing for #5 bar specified in this stem design segment = 10.50 in As Provided = 0.6200 in2/ft As Required = 0.4941 in2/ft

09/18/23 Page 68 of 75

Cantilevered Retaining Wall

Project File: 05 Beams.ec6

LIC#: KW-06013353, Build:20.23.05.25

SNAKE RIVER ENGINEERING

(c) ENERCALC INC 1983-2023

DESCRIPTION: FB ADU

09/18/23 Page 69 of 75

Cantilevered Retaining Wall

LIC#: KW-06013353, Build:20.23.05.25 SNAKE RIVER ENGINEERING

DESCRIPTION: FC ADU

Project File: 05 Beams.ec6
(c) ENERCALC INC 1983-2023

Code Reference:

Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

Criteria

Retained Height	=	9.33 ft
Wall height above soil	=	0.67 ft
Slope Behind Wall	=	0.00
Height of Soil over Toe	=	0.00 in
Water table above		
bottom of footing	=	0.0 ft

Surcharge Loads

Surcharge Over Heel = 0.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe = 0.0 Used for Sliding & Overturning

Axial Load Applied to Stem

Axial Dead Load	=	376.0 lbs
Axial Live Load	=	640.0 lbs
Axial Load Eccentricity	=	0.0 in

Soil Data

= Meth		psf
=		psf/ft
=		
=	250.0	psf/ft
=	110.00	pcf
=	110.00	pcf
=	0.400	
=	12.00	in
	= = = =	= 250.0 = 110.00 = 110.00 = 0.400

Lateral Load Applied to Stem

Lateral Load Height to Top Height to Bottom	= =	0.0 #/ft 0.00 ft 0.00 ft
Load Type	=	Wind (W) (Strength Level)
Wind on Exposed Stem (Strength Level)) =	0.0 psf

Adjacent Footing Load

Adjacent Footing Load	=	0.0 lbs
Footing Width	=	0.00 ft
Eccentricity	=	0.00 in
Wall to Ftg CL Dist	=	0.00 ft
Footing Type		Spread Footing
Base Above/Below Soil at Back of Wall	=	0.0 ft
Poisson's Ratio	=	0.300

09/18/23 Page 70 of 75

Cantilevered Reta	ainii	ng Wall					Project File	e: 05 Beams	s.ec6			
LIC#: KW-06013353, Build:20. DESCRIPTION: FC			SNAKE RIVER ENGINEEI	SNAKE RIVER ENGINEERING					(c) ENERCALC INC 1983-2023			
Design Summary			Stem Construction	_	Bottom							
Wall Stability Ratios Overturning Slab Resis		· ·	Design Height Above Ftg Wall Material Above "Ht" Design Method Thickness Rebar Size	ft = = = = =	Stem OK 0.00 Concrete SD 8.00 # 5	SD	SD	SD	SE			
Global Stability Total Bearing Load	=	1.24 3,909 lbs	Rebar Size Rebar Spacing Rebar Placed at Design Data	= =	# 5 12.00 Edge							
resultant ecc. Eccentricity with Soil Pressure @ Toe Soil Pressure @ Heel	=	1,350 psf OK 216 psf OK	fb/FB + fa/Fa Total Force @ Section Service Level	= Ibs =	0.933							
Allowable Soil Pressure Less ACI Factored @ Toe ACI Factored @ Heel	= s Than = =	1,500 psf Allowable 1,891 psf 303 psf	Strength Level MomentActual Service Level Strength Level	Ibs = ft-# = ft-# =	2,437.4 7,580.2							
Footing Shear @ Toe Footing Shear @ Heel Allowable	= = =	25.1 psi OK 6.8 psi OK 75.0 psi	MomentAllowable ShearActual Service Level	= psi =	8,121.3							
Sliding Calcs Lateral Sliding Force	=	1,928.2 lbs	Strength Level ShearAllowable Anet (Masonry) Wall Weight	psi = psi = in2 = psf =	32.8 75.0 100.0							
Vertical component of activ NOT considered in the calc			Rebar Depth 'd' Masonry Data fm Fs Solid Grouting	in = psi = psi = =	6.19							
Building Code Dead Load Live Load Earth, H Wind, W Seismic, E		1.200 1.600 1.600 1.600 1.000	Modular Ratio 'n' Equiv. Solid Thick. Masonry Block Type Masonry Design Method Concrete Data fc Fy	=	ASD 2,500.0 60,000.0							

09/18/23 Page 71 of 75

Cantilevered Retaining Wall

Project File: 05 Beams.ec6 LIC#: KW-06013353, Build:20.23.05.25

DESCRIPTION: FC ADU

SNAKE RIVER ENGINEERING

(c) ENERCALC INC 1983-2023

Concrete Stem Rebar Area Details

Bottom Stem Vertical Reinforcing Horizontal Reinforcing

As (based on applied moment): 0.287 in2/ft

Min Stem T&S Reinf Area 1.920 in2 (4/3) * As: 0.3827 in2/ft

200bd/fy: 200(12)(6.1875)/60000: 0.2475 in2/ft Min Stem T&S Reinf Area per ft of stem Height: 0.192 in2/ft

0.0018bh: 0.0018(12)(8): 0.1728 in2/ft Horizontal Reinforcing Options: Two layers of : One layer of :

Required Area: #4@ 25.00 in 0.287 in2/ft #4@ 12.50 in Provided Area: 0.31 in2/ft #5@ 19.38 in #5@ 38.75 in Maximum Area: 0.8382 in2/ft #6@ 27.50 in #6@ 55.00 in

Footing Data

Toe Wid Heel Wid			= =		.33 ft .66
Total Fo	oting W	idth	= _	4	.99
Footing ⁻	Γhickne	SS	=	14	.00 in
Key Wid Key Dep Key Dist	th	om Toe	= = =	0	.00 in .00 in .00 ft
f'c = Footing (Min. As (Cover @	Concret %	0 psi e Densit 2.00	_ =	150 0.00	000 psi .00 pcf 018 3.00 in

Footing Design Results

		Toe	Heel	
Factored Pressure	=	1,891	303 psf	
Mu' : Upward	=	8,524	201 ft-#	
Mu' : Downward	=	1,164	711 ft-#	
Mu: Design	=	7,360 OK	510 ft-#	OK
phiMn	=	14,400	3,600 ft-#	
Actual 1-Way Shear	=	25.13	6.77 psi	
Allow 1-Way Shear	=	75.00	40.00 psi	
Toe Reinforcing	=	#5@12.00 in		
Heel Reinforcing	=	None Spec'd		
Key Reinforcing	=	None Spec'd		
Footing Torsion, Tu		=	0.00 ft-lbs	
Footing Allow. Torsion	n, p	ohi Tu =	0.00 ft-lbs	

If torsion exceeds allowable, provide supplemental design for footing torsion.

Other Acceptable Sizes & Spacings

Toe: #4@ 7.93 in, #5@ 12.30 in, #6@ 17.46 in, #7@ 23.80 in, #8@ 31.34 in, #9@ 39.68 in, #10@ 50.39 in

Heel: phiMn = phi*5*lambda*sqrt(fc)*Sm

Key: No key defined

Min footing T&S reinf Area 1.51 in2 Min footing T&S reinf Area per foot 0.30 in2 /ft

If one layer of horizontal bars: If two layers of horizontal bars:

#4@ 7.94 in #4@ 15.87 in #5@ 12.30 in #5@ 24.60 in #6@ 17.46 in #6@ 34.92 in

09/18/23 Page 72 of 75

Cantilevered Retaining Wall

LIC#: KW-06013353, Build:20.23.05.25 SNAKE RIVER ENGINEERING (c) ENERCALC INC 1983-2023

DESCRIPTION: FC ADU

Summary of Overturning & Resisting Forces & Moments

		OV	ERTURNING	i		R	RESISTING		
Item		Force lbs	Distance ft	Moment ft-#		Force lbs	Distance ft	Moment ft-#	
HL Act Pres (ab water tb	ol)	1,928.2	3.50	6,746.4	Soil Over HL (ab. water tbl)	1,019.5	4.49	4,580.8	
HL Act Pres (be water to Hydrostatic Force	,	,,,,,,		-,	Soil Over HL (bel. water tbl) Water Table		4.49	4,580.8	
Buoyant Force	=				Sloped Soil Over Heel =				
Surcharge over Heel	=				Surcharge Over Heel =				
Surcharge Over Toe	=				Adjacent Footing Load =				
Adjacent Footing Load	=				Axial Dead Load on Stem =	376.0	3.66	1,377.4	
Added Lateral Load	=				* Axial Live Load on Stem =	640.0	3.66	2,344.5	
Load @ Stem Above So	il =				Soil Over Toe =				
<u> </u>	=				Surcharge Over Toe =				
					Stem Weight(s) =	1,000.0	3.66	3,663.3	
					Earth @ Stem Transitions =				
Total	=	1,928.2	O.T.M. =	6,746.4	Footing Weight =	873.3	2.50	2,178.8	
					Key Weight =				
Resisting/Overturnin	g Rati	io	=	1.75	Vert. Component =				
Vertical Loads used f	for Soi	l Pressure	= 3,908.	7 lbs	Total =	3,268.7	bs R.M.=	11,800.3	
					* Axial live load NOT included in	n total display	ed, or used fo	r overturning	

 ^{*} Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Project File: 05 Beams.ec6

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus 250.0 pci Horizontal Defl @ Top of Wall (approximate only) 0.075 in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,

because the wall would then tend to rotate into the retained soil.

09/18/23 Page 73 of 75

Cantilevered Retaining Wall

Project File: 05 Beams.ec6
SNAKE RIVER ENGINEERING (c) ENERCALC INC 1983-2023

LIC#: KW-06013353, Build:20.23.05.25 **DESCRIPTION:** FC ADU

Rebar Lap & Embedment Lengths Information

Stem Design Segment: Bottom

Stem Design Height: 0.00 ft above top of footing

Lap Splice length for #5 bar specified in this stem design segment (25.4.2.3a) = 23.40 in

Development length for #5 bar specified in this stem design segment = 18.00 in

Hooked embedment length into footing for #5 bar specified in this stem design segment = 10.50 inAs Provided = 0.3100 in2/ftAs Required = 0.2870 in2/ft

09/18/23 Page 74 of 75

Cantilevered Retaining Wall

Project File: 05 Beams.ec6

LIC#: KW-06013353, Build:20.23.05.25

SNAKE RIVER ENGINEERING

(c) ENERCALC INC 1983-2023

DESCRIPTION: FC ADU

09/18/23 Page 75 of 75