Structural Calculations

Project Title: Kaczmarek ADU/Shop

 Lot 2 \& 3 Block 2 King'sAddress: Pines Estates
Location: Adams County, Idaho

Job \#: 2023-5574 ADU/Shop

Prepared in accordance with 2018 IBC. Calculations expire by: 09/18/2024

Net Pressures (psf), Basic Load Cases

Surface	Roof angle $q=18.43$			Roof angle $q=18.43$		
	$\mathrm{GC}_{\mathrm{pf}}$	Net Press. $\mathrm{W} /$		$\mathrm{GC}_{\mathrm{pf}}$	Net Press. $\mathrm{W} /$	
		$\left(+\mathrm{GC}_{\mathrm{pi}}\right)$	$\left(-\mathrm{GC}_{\mathrm{pi}}\right)$		$\left(+\mathrm{GC}_{\mathrm{pi}}\right)$	$\left(-\mathrm{GC}_{\mathrm{pi}}\right)$
1	0.52	8.24	17.05	-0.45	-15.43	-6.61
2	-0.69	-21.30	-12.49	-0.69	-21.30	-12.49
3	-0.47	-15.88	-7.07	-0.37	-13.47	-4.65
4	-0.42	-14.58	-5.76	-0.45	-15.43	-6.61
5				0.40	5.39	14.20
6				-0.29	-11.51	-2.69
1 E	0.78	14.70	23.51	-0.48	-16.16	-7.35
2 E	-1.07	-30.61	-21.79	-1.07	-30.61	-21.79
3 E	-0.67	-20.89	-12.08	-0.53	-17.39	-8.57
4 E	-0.62	-19.54	-10.73	-0.48	-16.16	-7.35
5 E				0.61	10.53	19.34
6 E				-0.43	-14.94	-6.12

Net Pressures (psf), Torsional Load Cases

Surface	Roof angle $\mathrm{q}=18.43$		
	$\mathrm{GC}_{\mathrm{p} f}$	Net Press. W/	
		$\left(+\mathrm{GC}_{\mathrm{pi}}\right)$	$\left(-\mathrm{GC}_{\mathrm{pi}}\right)$
1 T	0.52	2.06	4.26
2 T	-0.69	-5.33	-3.12
3 T	-0.47	-3.97	-1.77
4 T	0.00	-3.64	-1.44
Surface	Roof angle $\mathrm{q}=$		0.00
	$\mathrm{GC}_{\mathrm{p} f}$	Net Press. W/	
		$\left(+\mathrm{GC}_{\mathrm{pi}}\right)$	$\left(-\mathrm{GC}_{\mathrm{pi}}\right)$
5 T	0.40	1.35	3.55
6 T	-0.29	-2.88	-0.67

Design pressures for MWFRS
$p=q_{h}\left[\left(G_{p f}\right)-\left(G_{p i}\right)\right]$
where: $\quad p=$ pressure in appropriate zone. (Eq. 28.3-1, page 311). $\quad p_{\min }=16 \quad$ psf (ASCE 7-16 28.3.4)
$\mathrm{GC}_{\mathrm{pf}}=$ product of gust effect factor and external pressure coefficient, see table below. (Fig. 28.3-1, page 312 \& 313)
$\mathrm{GC}_{\mathrm{pi}}=$ product of gust effect factor and internal pressure coefficient.(Tab. 26.13-1, Enclosed Building, page 271)
$=\mathbf{0 . 1 8} \quad$ or $\quad \mathbf{- 0 . 1 8}$
$a=$ width of edge strips, Fig 28.3-1, page 312, $\operatorname{MAX}[\operatorname{MIN}(0.1 B, 0.1 \mathrm{~L}, 0.4 \mathrm{~h}), \operatorname{MIN}(0.04 \mathrm{~B}, 0.04 \mathrm{~L}), 3]=\mathrm{ft}$

(ASCE 7-16 28.3.3)

 Cladding Coeffs.	Effective Area (ft^{2})	Zone 1		Zone 1'		Zone 2		Zone 2e		Zone 2n		Zone 2r	
		GC ${ }_{\text {P }}$	- GC ${ }_{\text {p }}$	GC ${ }_{\text {P }}$	- GC ${ }_{\text {p }}$	GC ${ }_{\text {P }}$	- GC ${ }_{\text {p }}$	GC ${ }_{\text {p }}$	- GC ${ }_{\text {P }}$	GC ${ }_{\text {p }}$	- GC ${ }_{\text {p }}$	GC ${ }_{\text {P }}$	- GC ${ }_{\text {P }}$
	2133	0.30	-0.80	0.30	-0.80	0.30	-2.20	0.30	-0.80	0.30	-1.00	0.30	-1.00
	Effective	Zone 3		Zone 3e		Zone 3r		Zone 4		Zone 5			
	$\text { Area }\left(\mathrm{ft}^{2}\right)$	GC ${ }_{\text {p }}$	- GC ${ }_{\text {p }}$	GC ${ }_{\text {P }}$	- GC ${ }_{\text {P }}$	GC ${ }_{\text {p }}$	- GC ${ }_{\text {P }}$	GC ${ }_{\text {p }}$	- GC ${ }_{\text {p }}$	GC ${ }_{\text {p }}$	- GC ${ }_{\text {p }}$		
	27	0.30	-2.50	0.30	-2.50	0.30	-1.80	0.99	-1.09	0.99	-1.38		

Comp. \& Cladding Pressures	Zone 1		Zone 1'		Zone 2		Zone 2e		Zone 2n		Zone 2r	
	Positive	Negative										
	2.94	-15.18	2.94	-15.18	2.94	-49.46	2.94	-15.18	2.94	-20.08	2.94	-20.08
	Zone 3		Zone 3e		Zone 3r		Zone 4		Zone 5		(Max Pressure 56.81 psf)	
	Positive	Negative										
	2.94	-56.81	2.94	-56.81	2.94	-39.67	19.82	-22.27	19.82	-29.36		

LOAD CASE 'A' FACTORED LOADS	
$0.6 * \mathrm{~W}_{\mathrm{r}}=\left(\mathrm{Z}_{2}+\mathrm{Z}_{3}\right) * 0.6=$	$\mathbf{3 . 3} \mathbf{~ p s f}$
$0.6 * \mathrm{~W}_{\mathrm{rE}}=\left(\mathrm{Z}_{2 \mathrm{E}}+\mathrm{Z}_{3 \mathrm{E}}\right) * 0.6=$	$\mathbf{5 . 8} \mathbf{~ p s f}$
$0.6 * \mathrm{~W}_{\mathrm{w}}=\left(\mathrm{Z}_{1}+\mathrm{Z}_{4}\right) * 0.6=$	$\mathbf{1 3 . 7} \mathrm{psf}$
$0.6 * \mathrm{~W}_{\mathrm{wE}}=\left(\mathrm{Z}_{1 \mathrm{E}}+\mathrm{Z4E}\right) * 0.6=$	$\mathbf{2 0 . 5} \mathbf{~ p s f}$

LOAD CASE 'B' FACTORED LOADS	
$0.6 * \mathrm{~W}_{\mathrm{r}}=\left(\mathrm{Z}_{2}+\mathrm{Z}_{3}\right) * 0.6=$	4.7 psf
$0.6 * \mathrm{~W}_{\mathrm{rE}}=\left(\mathrm{Z}_{2 \mathrm{E}}+\mathrm{Z}_{3 \mathrm{E}}\right) * 0.6=$	$\mathbf{7 . 9} \mathrm{psf}$
$0.6 * \mathrm{~W}_{\mathrm{w}}=\left(\mathrm{Z}_{5}+\mathrm{Z}_{6}\right) * 0.6=$	10.1 psf
$0.6 * \mathrm{~W}_{\mathrm{wE}}=\left(\mathrm{Z}_{5 \mathrm{E}}+\mathrm{Z}_{6 \mathrm{E}}\right) * 0.6=$	15.3 psf

ROOF COMPONENTS FACTORED LOAD	
$0.6^{*} \mathrm{Z}_{\mathrm{r}, \mathrm{c} \mathrm{c} \mathrm{c}}=$	$\mathbf{1 2 . 0} \mathrm{psf}$

WALL COMPONENTS FACTORED LOAD	
$0.6^{*} \mathrm{Z}_{\mathrm{w}, \mathrm{c} \mathrm{\& c}}=$	13.4 psf

1) FOUNDATIONS \& SLAB ON GRADE:
a) INSTALL FOUNDATION AND PREPARE SOILS FOR SLABS \& FOUNDATIONS ACCORDING TO IBC CHAPTER 18. PROVIDE POSITIVE DRAINAGE AWAY FROM STRUCTURE AND AVOID EXCESSIVE WETTING \& DRYING DURING EXCAVATIONS.
b) ALL FOOTING AND FOUNDATION DESIGNS ARE BASED ON AN ALLOWABLE SOIL BEARING CAPACITY (SEE DESIGN CRITERIA) OF COMPETENT NATIVE SOIL. IF THE SITE HAS A LOWER BEARING CAPACITY THAN ASSUMED THE FOUNDATION PLAN WILL NEED TO BE REDESIGNED. IF SOIL IS DISTURBED, COMPACT SOIL IN 8" LIFTS TO 95\% MAXIMUM DRY DENSITY PER ASTM D1557 OR IN ACCORDANCE WITH GEOTECHNICAL REPORT ASSOCIATED WITH PROJECT.
c) REPLACE ANY ENCOUNTERED EXISTING FILL WITH COMPACTED FILL, SEE NOTE 1.A. ABOVE FOR MORE INFORMATION.
d) MINIMUM FROST DEPTH (SEE DESIGN CRITERIA) FROM LOWEST ADJACENT FINISH GRADE TO BOTTOM OF FOOTING SHALL BE MAINTAINED FOR ALL EXTERIOR FOOTINGS.
e) CONTRACTOR TO VERIFY LOCATIONS FOR STEP FOOTINGS AND FOUNDATION WALLS BASED ON SITE RELATED FINISHED GRADE, IF NECESSARY. FOOTING STEPS ARE TO BE A MAXIMUM OF (2) VERTICALLY TO (1) HORIZONTALLY.
f) ALL SLABS SHALL HAVE REINFORCING PER PLANS \& CONTROL JOINTS AT 10'-0" SPACING MAXIMUM.
g) ALL STRUCTURAL FILL BELOW FOOTINGS SHALL EXTEND OUT PAST FOOTINGS AT A SLOPE OF 1 VERTICAL TO 2 HORIZONTAL UNITS TO COMPETENT SOILS.
h) PROVIDE ADEQUATE DRAINAGE BEHIND ALL WALLS TO ALLEVIATE ANY STANDING WATER.
i) ALL CONCRETE PAD \& APRON LOCATIONS TO BE SECURED TO FOUNDATION WITH \#4 DOWELS AT 24" O.C. EXTEND EXPOSED SIDES A MINIMUM OF 8" BELOW FINISHED GRADE.
j) MINIMUM CONCRETE SLAB DEPTH IS 4".
2) CONCRETE:
a) ALL CONCRETE WORK TO BE DONE IN ACCORDANCE WITH THE CURRENT ACI "STANDARD SPECIFICATION FOR STRUCTURAL CONCRETE" UNLESS NOTED.
b) USE ASTM C150 COMPLIANT TYPE I/II CEMENT, MINIMUM OF 450\#/YARD.
c) ALLOW 5\% (WITHIN 1.5\%) ENTRAINED AIR IN EXPOSED CONCRETE.
d) ALLOW 4" MAXIMUM SLUMP (WITHOUT SUPERPLASTICIZER).
e) USE $3 / 4$ " MAXIMUM NORMAL WEIGHT AGGREGATE. USE OF CHLORIDE ADMIXTURES IS PROHIBITED.
f) THE MINIMUM COMPRESSIVE STRENGTHS FOR CONCRETE AT 28 DAYS SHALL BE AS FOLLOWS
3) (DESIGNED USING 2,500 PSI):
i) ALL FOOTINGS, FOUNDATIONS, AND STEM WALLS F'C = 3,000 PSI.
ii) SLABS ON GRADE F'C = 3,500 PSI.
b) MINIMUM CLEAR PROTECTION FOR REINFORCEMENT SHALL BE AS FOLLOWS:
i) PLACED DIRECTLY AGAINST EARTH: 3".
ii) FORMED SURFACES \#5 BARS OR SMALLER: 1-1/2".
iii) STRUCTURAL SLABS \& INTERIOR WALLS: 1".
c) ALL EMBEDDED ANCHOR BOLTS SHALL BE A36 OR A307 OR F1554 GR. 36 STEEL W/7" MIN. EMBEDMENT. ANCHOR BOLTS TO BE WITHIN 1'-0" OF SILL PLATE ENDS, WITH A MIN. OF TWO PER WALL AND NO CLOSER THAN 6" FROM CONCRETE WALL CORNERS.
d) SAWN CONTROL \& CONSTRUCTION JOINTS SHALL BE MADE AS SOON AS POSSIBLE WITHOUT DAMAGE TO THE SURFACE. FILLING OF SAWN JOINTS WHERE REQUIRED SHALL BE DELAYED AS LONG AS POSSIBLE TO ALLOW MAXIMUM SHRINKAGE TO OCCUR IN SLABS.
e) PROTECT ALL CONCRETE FROM FREEZING.
f) WET SETTING OF REINFORCING BARS IN FOOTINGS AND WALLS IS NOT ALLOWED.
g) BLOCK-OUT ALL STEM WALLS AT ENTRIES AS REQUIRED.
h) CONCRETE FORM WORK TO BE OF ADEQUATE STRENGTH AND BRACED TO PREVENT DEFORMATION.
i) ALL LOWER LEVEL AND RETAINING WALLS WHICH HAVE FILL HIGHER THAN AN INTERIOR FLOOR LEVEL SHALL HAVE AN APPROVED WATERPROOFING MEMBRANE APPLIED TO WITHIN 3" OF FINISHED GRADE HEIGHT.
4) PROVIDE ADEQUATE TEMPORARY BRACING OF CONCRETE AND/OR CMU RETAINING WALLS DURING BACKFILL PRIOR TO INSTALLATION OF MAIN FLOOR FRAMING AND BASEMENT CONCRETE SLAB ON GRADES. WALL DESIGNS ARE BASED ON TOP OF WALL RESTRAINED BY FINISHED FLOOR SYSTEM AND RESISTING SLIDING BY HAVING BASEMENT CONCRETE SLAB ON GRADE FLOOR INSTALLED.
a) REQUIRE THAT ALL GRADING, EXCAVATION, AND INSTALLATION OF FOUNDATIONS BE PERFORMED UNDER THE INSPECTION AND TESTING OF A QUALIFIED GEOTECHNICAL CONSULTANT DURING THE CRITICAL STAGES OF CONSTRUCTION.
b) STAIN \& TEXTURE OF EXPOSED CONCRETE SURFACES PER OWNER'S DIRECTION.
c) USE SIMPSON 'SET’ OR EQUIVALENT FOR FASTENING POST-INSTALLED ANCHORS TO EXISTING CONCRETE.
d) USE 6x6-W4.0xW4.0 WELDED WIRE FABRIC (WWF) FOR SLABS REQUIRING REINFORCEMENT (UNLESS NOTED). PLACE 1-1/2" FROM BOTTOM OF SLAB USING APPROVED METAL DEVICES. LAP ONE FULL MESH AT SPLICES.
e) USE ASTM C827 COMPLIANT NON-METALLIC, NON-SHRINK, 3-DAY 4000 PSI GROUT FOR BASEPLATES.
f) USE ASTM C1116 COMPLIANT FIBRILLATED POLYPROPYLENE TO REINFORCE SLABS (IF USING FIBER REINFORCEMENT IN LIEU OF WWF).
5) REINFORCING STEEL:
a) PLACE REBAR ACCORDING TO CURRENT ACI DETAILING MANUAL.
b) USE ASTM A615 COMPLIANT GRADE 60 BARS; IF INTENDED TO BE WELDED, USE ASTM A706 COMPLIANT GRADE 60 BARS (WELDING OF REBAR NOT PERMITTED UNLESS SPECIFICALLY NOTED OR DETAILED).
c) MINIMUM LENGTH OF LAPPED SPLICES SHALL BE 48 TIMES BAR DIAMETER UNLESS NOTED. SPLICE TOP BARS NEAR MID-SPAN, BOTTOM BARS NEAR SUPPORTS.
d) OTHERWISE. STAGGER SPLICES IN WALLS SO THAT NO TWO ADJACENT BARS ARE SPLICED IN THE SAME LOCATION.
e) WELDED WIRE FABRIC SHALL CONFORM TO ASTM A185, FY = 75,000 PSI.
f) REINFORCING SHALL BE CONTINUOUS THROUGH ALL COLD JOINTS.
g) PROVIDE CORNER BARS W/ 18" LEGS AT CORNERS AND INTERSECTING WALLS AND FOOTINGS, SIZE AND PLACEMENT TO MATCH HORIZONTAL REINFORCEMENT.
h) PROVIDE \#4 CONTINOUS HORIZONTALS AT TOP OF WALL, (2) \#4 CONTINUOUS IN FOOTINGS, AND (2) \#4 CONTINUOUS ABOVE ALL OPENINGS U.N.O. PROVIDE \#4 HORIZONTALS AT ALL INTERSECTING FLOORS AND ROOF LEVELS, BOTTOM OF ALL WINDOWS AND AT 10'-0" O.C. MAXIMUM OR PER PLANS.
i) PROVIDE \#4 VERTICALS AT 24" O.C. AT EACH SIDE OF WALL OPENINGS AND AT EACH END OF WALLS W/ STANDARD HOOK EXTENDING INTO FOOTING.
j) PROVIDE FOUNDATION HOLDOWNS AT ALL SHEAR WALL LOCATIONS PER PLAN, IF APPLICABLE.
6) WOOD FRAMING:
a) STRUCTURAL LUMBER SHALL BE DOUGLAS FIR-LARCH (DF-L) \#2 OR BETTER.
b) WOOD INSTALLED WITHIN 1" OF CONCRETE OR MASONRY SHALL BE REDWOOD OR PRESSURE TREATED.
c) PROVIDE WET USE ADHESIVES.
d) MAXIMUM LUMBER MOISTURE CONTENTS SHALL BE 15\%.
e) ALL FRAMING SHALL BE IN ACCORDANCE WITH THE ADOPTED CODE.
f) PROVIDE SOLID BLOCKING BELOW ALL BEARING WALLS AND POSTS. PROVIDE BLOCKING AT 24" O.C. AT JOISTS PARALLEL WITH BEARING WALLS ABOVE.
g) MINIMUM HEADER AT BEARING WALL TO BE 4x8 WITH 2x6 TRIMMER STUD PLUS 2x6 KING STUD EACH SIDE. HEADERS WITH LARGER LOADING OR DIFFERENT BEARING/KING STUD CONDITIONS WILL BE CALLED OUT IN PLANS.
h) BLOCK AND NAIL ALL HORIZONTAL PANEL EDGES AT SHEAR WALLS \& AS NOTED ON THE PLAN.
(1) ROOF SHEATHING IN AREAS W/ SNOW LOAD < 50 PSF: 7/16" CDX MINIMUM, 24/16 SPAN RATING WITH 8D AT 6" O.C. EDGE AND 12" O.C. FIELD U.N.O.
(2) ROOF SHEATHING IN AREAS W/ SNOW LOAD > 50 PSF: 19/32" CDX MINIMUM, 32/16 SPAN RATING WITH 8D AT 6" O.C. EDGE AND 12" O.C. FIELD U.N.O.
(3) FLOOR SHEATHING: 3/4" CDX MINIMUM, 48/24 SPAN RATING WITH 10D AT 6" O.C. EDGE AND 12" O.C. FIELD U.N.O.
(4) EXT. WALL SHEATHING: 7/16" CDX MINIMUM, 24/16 SPAN RATING WITH AT 6" O.C. EDGE AND 12" O.C. FIELD U.N.O.
(5) ALL SPAN RATINGS TO MEET LOCAL CODES.
i) ORIENTED STRAND BOARD (OSB) WITH THE SAME SPAN RATING MAY BE SUBSTITUTED FOR PLYWOOD NOTED ABOVE. SHEATHING SHALL BE APA RATED EXPOSURE 1. STAGGER SHEATHING END JOINTS 4'-0". PROVIDE 1/8" MINIMUM SPACE AT ALL PANEL EDGES FOR EXPANSION.
j) ALL EXTERIOR WALLS TO BE 2x6 AT 16" O.C. AND INTERIOR NON-LOAD BEARING PARTITIONS TO BE 2x4 AT 16" O.C. STUD WALLS (U.N.O. ON PLAN).
k) PROVIDE STEEL STRAPS AT PIPES IN STUD WALLS AS REQUIRED BY THE ADOPTED CODE.
I) OVER-FRAMING SHALL BE DONE SUCH THAT VERTICAL LOADS ARE TRANSFERRED TO MAIN STRUCTURE BELOW BY DIRECT BEARING AT SPACING NOT TO EXCEED 24" O.C. FOR RAFTERS AND 48" FOR POSTS WHEN SNOW LOAD LESS THAN 50 PSF.
m) METAL HANGERS AND CONNECTIONS ARE ‘SIMPSON’ AND SHALL BE INSTALLED PER ‘SIMPSON’ RECOMMENDATIONS.
n) ENGINEERED "I" JOISTS TO CONFORM TO ASTM D2559 AND BE DESIGNED, CERTIFIED, ERECTED, INSTALLED, AND BRACED PER MANUFACTURER’S SPECS. ALL REFERENCES ON PLANS ARE FOR WEYERHAEUSER PRODUCTS. USE THESE PRODUCTS OR AN APPROVED EQUIVALENT.
o) ALL MICROLLAM LVL PRODUCTIONS SHALL CONFORM TO ASTM D2559 AND HAVE THE MINIMUM SECTION PROPERTIES OF Fb = 2600 PSI, Fv = 285 PSI, E = 2,000,000 PSI.
p) ALL ROOF OPENINGS GREATER THAN 12"x12" SHALL BE FRAMED IN OPENINGS.
q) GLUE-LAM BEAMS SHALL CONFORM TO ANSI/AITC A190.1 AND BE DOUGLAS FIR COMBINATION 24F-V4 FOR SIMPLY SUPPORTED AND 24F-V8 FOR CANTILEVERED AND/OR DOUBLE SPAN BEAMS, Fb = 2400 PSI, Fv = 165 PSI, E = 1,600,000 PSI. PROVIDE WET USE GLUE ON ALL EXTERIOR LOCATIONS.
r) ALL NAILS SPECIFIED TO BE COMMON WIRE NAILS U.N.O.

7) PRE-MANUFACTURED METAL PLATED TRUSSES:

i) TRUSS MANUFACTURER TO PROVIDE PROOF OF 3RD PARTY INSPECTION PER IBC 2303.4.
ii) PRE-MANUFACTURED TRUSS PROVIDER TO VERIFY ALL LOADING PATTERNS TO FOOTINGS BELOW.
b) PRE-MANUFACTURED TRUSS PROVIDER TO PROVIDE SUPPORT AT TRUSSES FOR LOADING SHOWN ON ALL PLANS, SECTIONS AND DETAILS. VERIFY SECOND FLOOR LOADING AND SPECIAL CASE POINT LOADING FROM FRAMED ROOF SYSTEMS.
c) ALL PRE-MANUFACTURED ROOF TRUSSES SHALL BE DESIGNATED AS A DEFERRED SUBMITTAL AND DESIGNED FOR THE ROOF LOADS SHOWN AND ACCOUNT FOR ANY REQUIRED ADDITIONAL DRIFT, VALLEY, OR EAVE LOADS PER CODE.
d) IN ADDITION TO 7 PSF DEAD LOAD ON TOP CHORD, DESIGN BOTTOM CHORD FOR 10 PSF LIVE LOAD AND 10 PSF DEAD LOAD.
e) TRUSS SHOP DRAWINGS SHALL BE SUBMITTED TO THE ENGINEER OF RECORD (E.O.R.) FOR REVIEW AND COMPLIANCE.
8) GENERAL STRUCTURAL NOTES:
a) CONTRACTOR TO VERIFY ALL OPENINGS, BUILDING DIMENSIONS, COLUMN LOCATIONS AND DIMENSIONS WITH OWNER, ENGINEER, DRAFTER, AND/OR COMPONENT MANUFACTURERS PRIOR TO POURING OF ANY CONCRETE FOUNDATIONS OR CONSTRUCTION.
b) THE ENGINEER OF RECORD IS NOT RESPONSIBLE FOR ANY DEVIATIONS FROM THESE PLANS UNLESS SUCH CHANGES ARE AUTHORIZED IN WRITING TO THE ENGINEER OF RECORD.
c) THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING SAFE AND ADEQUATE SHORING AND/OR TEMPORARY STRUCTURAL STABILITY FOR ALL PARTS OF THE STRUCTURE DURING CONSTRUCTION. THE STRUCTURE SHOWN ON THE DRAWINGS HAS BEEN DESIGNED FOR FINAL CONFIGURATION.
d) NOTCHING AND/OR CUTTING OF ANY STRUCTURAL MEMBER IN THE FIELD IS PROHIBITED, UNLESS PRIOR CONSENT IS GIVEN BY THE ENGINEER OF RECORD.
e) DIMENSIONS SHOWN DO NOT INCLUDE THE THICKNESS OF ANY APPLIED FINISH MATERIALS. DIMENSIONS ARE EITHER TO FACE OF STUD, FACE OF MASONRY, OR CENTERLINE OF OPENINGS/STRUCTURE.
f) ALL WORK TO CONFORM TO ALL LOCAL, STATE, AND NATIONAL CODES.
g) CONTRACTOR IS RESPONSIBLE FOR ALL FEES, PERMITS, AND INSPECTIONS AS REQUIRED BY GOVERNING AGENCY.
h) ALL ELEVATION REFERENCES ARE FROM THE MAIN FLOOR ELEVATION, SET AT 0’-0".
i) ALL SHOP DRAWINGS FOR STRUCTURAL SYSTEMS TO BE REVIEWED AND STAMPED BY THE ENGINEER OF RECORD.
9) SPECIAL INSPECTIONS \& STRUCTURAL OBSERVATIONS:
a) PER IBC SECTION 1704, WHEN SPECIFICALLY REQUIRED BY THE LOCAL JURISDICTION, A REPRESENTATIVE FROM THE ENGINEER OF RECORD'S OFFICE SHALL BE PRESENT TO PERFORM ON-SITE STRUCTURAL OBSERVATION VISITS. CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION OF ALL SIGNIFICANT TIMES OF CONSTRUCTION WITH THE ENGINEER OF RECORDS OFFICE PRIOR TO THE DAY OF CONSTRUCTION AND/OR PLACEMENT (MINIMUM OF 7 DAYS). SIGNIFICANT TIMES OF CONSTRUCTION ARE AS FOLLOWS:
i) PLACEMENT OF STRUCTURALLY RELATED REINFORCED CONCRETE FOUNDATIONS, INCLUDING REBAR.
ii) PLACEMENT OF PERIMETER LOAD BEARING WALLS, LOAD SUPPORTING BEAMS AND/OR HEADERS AND LATERAL RESISTING CONNECTION ELEMENTS.
iii) COMPLETION OF STRUCTURAL SYSTEMS AS REQUIRED AND/OR DEFINED BY THE LOCAL JURISDICTION.
b) STRUCTURAL OBSERVATIONS DO NOT INCLUDE OR WAIVE THE RESPONSIBILITY FOR THE SPECIAL INSPECTIONS REQUIRED BY THE IBC SECTION 1705 OR OTHER SECTIONS OF THE CODE AS REQUIRED BY THE LOCAL BUILDING JURISDICTION.
c) ALL SPECIAL INSPECTIONS SHALL BE PERFORMED TO MEET THE REQUIRMENTS OF THE LATEST IBC AND THE LOCAL BUILDING JURISDICTION.
i) ALL SPECIAL INSPECTIONS SHALL BE PERFORMED BY A QUALIFIED PERSON WHO SHALL SHOW COMPETANCE TO THE SATISFACTION OF THE BUILDING OFFICIAL, OWNER, ARCHITECT AND ENGINEER OF RECORD FOR THE PARTICULAR OPERATION. ALL SPECIAL INSPECTION REPORTS SHALL BE SUBMITTED TO THE BUILDING DEPARTMENT AND ENGINEER OF RECORD WITH THE PROJECT INFORMATION AND ADDRESS.

X1-2	9.6	55	3.5	60.0	20.0	15.1	19.0	10.8	60.0			0.05	$=$	$\mathbf{3 . 4 4}$
$\mathbf{2 . 3 7}$	Wind													
X2-2	9.6	55	3.5	60.0	20.0	15.1	19.0	10.8	60.0		0.05	$=$	$\mathbf{3 . 4 4}$	$\mathbf{2 . 3 7}$

Y1-2	9.6	55	3.5	20.0	60.0	17.8	19.0	10.8	20.0			0.05	$=$	$\mathbf{1 . 3 0}$
	$\mathbf{1 . 9 4}$	Seismic												
Y2-2	9.6	55	3.5	20.0	60.0	17.8	19.0	10.8	20.0		0.05	$=$	1.30	1.94
Seismic														

X1-1	9.6	55	5.0	60.0	33.5	15.1	19.0	16.0	60.0	0.0	0	0	0.05	$=$	$\mathbf{3 . 2 3}$	$\mathbf{2 . 4 6}$
X2-1	0.0	18	0.0	60.0	33.5	15.1	19.0	16.0	60.0	5.5	3.44	2.37	0.05	$=$	$\mathbf{6 . 1 0}$	$\mathbf{2 . 7 4}$

Y1-1	9.6	55	5.0	43.0	60.0	15.6	19.0	16.0	43.0	0	0	0	0.05	$=$	$\mathbf{3 . 7 2}$	$\mathbf{4 . 3 9}$	Seismic
Y2-1	0.0	18	0.0	24.0	24.0	17.2	8.0	16.0	24.0	5.5	1.30	1.94	0.17	$=$	$\mathbf{4 . 0 7}$	$\mathbf{3 . 3 5}$	Wind

SHEAR WALL CALCULATIONS:						
	X1-1	X2-1	X2-1	Y1-1	Y2-1	
Shear Wall Forces						
Total length of wall	24.50 ft	43.00 ft	43.00 ft	60.00 ft	24.00 ft	
Total length of shear wall $\mathrm{L}=$	24.50 ft	14.42 ft	6.00 ft	60.00 ft	24.00 ft	
Total length of full ht seg. $\quad L_{w}=$	12.00 ft	4.42 ft	6.00 ft	13.00 ft	24.00 ft	
height of shear wall $\quad \mathrm{H}=$	9.13 ft	16.00 ft	16.00 ft	16.00 ft	16.00 ft	
Maximum opening height $\quad \mathrm{H}^{\prime}=$	2.00 ft	12.50 ft	0.00 ft	2.00 ft	0.00 ft	
Total force at top of wall $\quad \mathrm{V}_{1}=$	3232 lbs	3965 lbs	2135 lbs	4394 lbs	4075 lbs	
Self weight $\quad \mathrm{W}_{\mathrm{DL} \text { self }}=$	173 plf	304 plf	304 plf	304 plf	304 plf	
Applied dead load $\quad \mathrm{W}_{\text {DL above }}=$	72 plf	72 plf	72 plf	60 plf	60 plf	
Prefered OSB thickness in	7/16	7/16	7/16	7/16	7/16	
Prefered Gyp thickness in	1/2	1/2	1/2	1/2	1/2	
Wall Connected to Concrete $\quad \mathrm{y} / \mathrm{n}=$	Y	Y	Y	Y	Y	
Shear Wall Segments						
	4.00	2.75	6.00	6.50	24.00	
	4.00	1.67		6.50		
	4.00					
Shear Transfer to Concrete						
1/2 Anchor Bolts @ Provide: Min \# of 1/2 Anchor Bolts Load From Above	Not Req'd	3500 lbs	5017 lbs	Not Req'd	99 lbs	
	72 " O.C.		72 " O.C.	72 " O.C.	72 " O.C.	
	Code Min.		Code Min.	Code Min.	Code Min.	
	(4) Min		(3) Min	(5) Min	(4) Min	
	0.00	0.00	0.00	0.00	0.00	
		HD3	HD3		Perp. Wall	
Shear Resisting System						
Force Calculated	269.36	896.96	355.80	338.02	169.78	
	OSB	B.F.	OSB	OSB	OSB	
Min Shear Wall Segment: Provide: Va=	2.61 ft	1.33 ft	4.57 ft	4.57 ft	4.57 ft	
	SW1	4400	SW1	SW1	SW1	
					Gyp.	
Min Shear Wall Segment: Provide: $\quad \mathrm{Va}=$					8.00 ft	
					SWC	
Blocking / Nailing Framing Attachment						
Blocking Unit ShearBlockingNailing	132 plf	92 plf	50 plf	73 plf	170 plf	
	NONE	NONE	NONE	NONE	NONE	
	See SCHED	See SCHED	See SCHED	See SCHED	T1	
Unit Base Shear						
\% of full height segments $\% \mathrm{fh}=\mathrm{L}_{\mathrm{w}} / \mathrm{L}=$ \% of maximum opening height $\%$ oh $=\mathrm{H}^{\prime} / \mathrm{H}=$ Shear cap adj factor SCAF Unit base shear vbase $\mathrm{V}_{1} / \mathrm{L}_{\mathrm{w}}$ $=$ Effective unit base shear vreq $=\mathrm{V}_{\text {base }} / \mathrm{SCAF}$ $=$ Ovrtrn. mo. Ttl. length of wall OTM$=$	0.490	0.307	1.000	0.217	1.000	
	0.219	0.781	0.000	0.125	0.000	
	1.00	0.52	1.00	1.00	1.00	
	269 plf	897 plf	356 plf	338 plf	170 plf	
	269 plf	1733 plf	356 plf	338 plf	170 plf	
	29.5 k-ft	24.0 k-ft	$34.2 \mathrm{k}-\mathrm{ft}$	70.3 k -ft	$65.2 \mathrm{k}-\mathrm{ft}$	
Shear wall adjustment factor						
Resist moment total L. of wall $\begin{aligned} & R M= \\ & r= \\ & C_{0}=\end{aligned}$	73.5 k -ft	0.5 k -ft	6.8 k-ft	654.3 k -ft	104.7 k -ft	
	0.8141	0.3613	1.0000	0.6887	1.0000	
	1.2117	0.5176	1.0000	1.9592	1.0000	

Loads: BLC 1, Wind Load Envelope Only Solution

Wood Section Sets

	Label	Shape	Type	Design List	Material	Design Rules	A [in2]	I (90,270) ...l (0,180) [i...	
1	Chord	4.5X5.5FS	Column	Rectangular	DF/L \#2	Typical	24.75	41.766	62.391
2	Web	2X6	Beam	None	DF/L \#2	Typical	8.25	1.547	20.797
3	Beam	4X12	Beam	None	24F-1.8E DF Balanced	Typical	39.375	40.195	415.283

Joint Coordinates and Temperatures

	Label	X [ft]	Y [$[\mathrm{t}]$	Temp [F]
1	N1	0	0	0
2	N8	0	14	0
3	N10	1.92	0	0
4	N17	1.92	14	0
5	N5	0	2	0
6	N6	0	4	0
7	N7	0	6	0
8	N8A	0	8	0
9	N9	0	10	0
10	N10A	0	12	0
11	N11	1.92	2	0
12	N12	1.92	4	0
13	N13	1.92	6	0
14	N14	1.92	8	0
15	N15	1.92	10	0
16	N16	1.92	12	0
17	N17A	14	0	0
18	N18	15.92	0	0
19	N19	14	14	0
20	N20	15.92	14	0
21	N21	14	2	0
22	N22	14	4	0
23	N23	14	6	0
24	N24	14	8	0
25	N25	14	10	0
26	N26	14	12	0
27	N27	15.92	2	0
28	N28	15.92	4	0
29	N29	15.92	6	0
30	N30	15.92	8	0
31	N31	15.92	10	0
32	N32	15.92	12	0

Joint Boundary Conditions

	Joint Label	$X[k / \mathrm{in}]$	$\mathrm{Y}[\mathrm{k} / \mathrm{in}]$	Rotation $[\mathrm{k}-\mathrm{ft} / \mathrm{rad}]$
1	N1	Reaction	Reaction	
2	N18		Reaction	
3	N10		Reaction	
4	N17A	Reaction	Reaction	

Wood Design Parameters

	Label	Shape	Length[...	Le-out[ft]	Le-in[tt]	le-bend to...	le-bend bo...	K-out	K-in	CV	Cr	Out sw..	In sway
1	M1	Chord	14	2	2	Lb out							
2	M2	Chord	14	2	2								
3	M4	Web	2.772			Lb out							
4	M5	Web	1.92			Lb out							
5	M6	Web	2.772			Lb out							
6	M7	Web	1.92			Lb out							
7	M8	Web	2.772			Lb out							
8	M9	Web	1.92			Lb out							
9	M10	Web	2.772			Lb out							
10	M11	Web	1.92			Lb out							
11	M12	Web	2.772			Lb out							
12	M13	Web	1.92			Lb out							
13	M14	Web	2.772			Lb out							
14	M15	Web	1.92			Lb out							
15	M16	Web	2.772			Lb out							
16	M17	Chord	14	2	2								
17	M18	Chord	14	2	2								
18	M19	Web	2.772			Lb out							
19	M20	Web	1.92			Lb out							
20	M21	Web	2.772			Lb out							
21	M22	Web	1.92			Lb out							
22	M23	Web	2.772			Lb out							
23	M24	Web	1.92			Lb out							
24	M25	Web	2.772			Lb out							
25	M26	Web	1.92			Lb out							
26	M27	Web	2.772			Lb out							
27	M28	Web	1.92			Lb out							
28	M29	Web	2.772			Lb out							
29	M30	Web	1.92			Lb out							
30	M31	Web	2.772			Lb out							
31	M31A	Beam	15.92	0	0	Lb out							

Joint Loads and Enforced Displacements (BLC 1 : Wind Load)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/f...
1	N8	L	X	4.4

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Joint	Point
1	Wind Load	WL			Distributed	
2	Dead Load	DL				1

Envelope Maximum Member Section Forces

Envelope Maximum Member Section Forces (Continued)

	Member		Axial [k]	Loc[ft]	LC	Shear[k]	Loc[ft]	LC	Moment[k-ft]	Loc[ft]	LC
4		min	-. 265	12.104	17	-. 065	2.042	9	-. 016	1.896	9
5	M4	max	. 107	0	16	0	0	1	0	0	1
6		min	-1.891	0	17	0	0	1	0	0	1
7	M5	max	1.27	0	17	0	0	1	0	0	1
8		min	-. 068	0	1	0	0	1	0	0	1
9	M6	max	. 091	0	16	0	0	1	0	0	1
10		min	-1.815	0	17	0	0	1	0	0	1
11	M7	max	1.273	0	17	0	0	1	0	0	1
12		min	-. 065	0	1	0	0	1	0	0	1
13	M8	max	. 094	0	16	0	0	1	0	0	1
14		min	-1.837	0	17	0	0	1	0	0	1
15	M9	max	1.268	0	17	0	0	1	0	0	1
16		min	-. 065	0	1	0	0	1	0	0	1
17	M10	max	. 094	0	16	0	0	1	0	0	1
18		min	-1.835	0	17	0	0	1	0	0	1
19	M11	max	1.28	0	17	0	0	1	0	0	1
20		min	-. 065	0	1	0	0	1	0	0	1
21	M12	max	. 094	0	16	0	0	1	0	0	1
22		min	-1.829	0	17	0	0	1	0	0	1
23	M13	max	1.242	0	17	0	0	1	0	0	1
24		\min	-. 065	0	1	0	0	1	0	0	1
25	M14	max	. 094	0	16	0	0	1	0	0	1
26		min	-1.918	0	17	0	0	1	0	0	1
27	M15	max	1.434	0	17	0	0	1	0	0	1
28		min	-. 066	0	1	0	0	1	0	0	1
29	M16	max	. 096	0	16	0	0	1	0	0	1
30		min	-1.967	0	17	0	0	1	0	0	1
31	M17	max	2.598	12.104	9	. 033	10.063	9	. 14	2.042	9
32		min	-5.997	0	17	-. 071	0	9	-. 046	11.958	9
33	M18	max	8.303	0	9	. 024	4.083	9	. 107	4.083	17
34		min	-. 251	12.104	9	-. 063	2.042	9	-. 017	1.896	9
35	M19	max	-. 058	0	18	0	0	1	0	0	1
36		\min	-2.076	0	9	0	0	1	0	0	1
37	M20	max	1.509	0	9	0	0	1	0	0	1
38		min	. 04	0	18	0	0	1	0	0	1
39	M21	max	-. 056	0	18	0	0	1	0	0	1
40		min	-2.029	0	9	0	0	1	0	0	1
41	M22	max	1.319	0	9	0	0	1	0	0	1
42		min	. 039	0	18	0	0	1	0	0	1
43	M23	max	-. 056	0	18	0	0	1	0	0	1
44		min	-1.94	0	9	0	0	1	0	0	1
45	M24	max	1.357	0	9	0	0	1	0	0	1
46		\min	. 039	0	18	0	0	1	0	0	1
47	M25	max	-. 056	0	18	0	0	1	0	0	1
48		min	-1.946	0	9	0	0	1	0	0	1
49	M26	max	1.345	0	9	0	0	1	0	0	1
50		min	. 039	0	18	0	0	1	0	0	1
51	M27	max	-. 057	0	18	0	0	1	0	0	1
52		\min	-1.95	0	9	0	0	1	0	0	1
53	M28	max	1.352	0	9	0	0	1	0	0	1
54		\min	. 039	0	18	0	0	1	0	0	1
55	M29	max	-. 055	0	18	0	0	1	0	0	1

Envelope Maximum Member Section Forces (Continued)

Member			Axial[k]	Loc[ft]	LC	Shear[k]	Loc[ft]	LC	Moment[k- ft$]$	Loc[ft]	LC
56		min	-1.918	0	9	0	0	1	0	0	1
57	M30	max	1.348	0	9	0	0	1	0	0	1
58		min	. 041	0	18	0	0	1	0	0	1
59	M31	max	-. 064	0	18	0	0	1	0	0	1
60		min	-2.027	0	9	0	0	1	0	0	1
61	M31A	max	2.656	0	17	1.807	14.096	9	3.329	13.93	9
62		min	-. 004	0	1	-. 785	13.93	9	-2.6	1.99	17

Envelope Member End Reactions

	Member	Membe...		Axial [k]	LC	Shear[k]	LC	Moment[k-ft]	LC
1	M1	I	max	. 204	16	0	1	0	1
2			min	-6.633	17	-. 072	17	0	1
3		J	max	1.391	17	. 004	1	0	1
4			min	-. 211	1	-. 013	17	0	1
5	M2	I	max	7.869	9	. 008	9	0	1
6			min	. 08	18	0	1	0	1
7		J	max	. 54	16	. 003	1	0	1
8			min	-. 265	17	-. 002	17	0	1
9	M4	I	max	. 107	16	0	1	0	1
10			min	-1.891	17	0	1	0	1
11		J	max	. 107	16	0	1	0	1
12			min	-1.891	17	0	1	0	1
13	M5	I	max	1.27	17	0	1	0	1
14			min	-. 068	1	0	1	0	1
15		J	max	1.27	17	0	1	0	1
16			min	-. 068	1	0	1	0	1
17	M6	I	max	. 091	16	0	1	0	1
18			min	-1.815	17	0	1	0	1
19		J	max	. 091	16	0	1	0	1
20			min	-1.815	17	0	1	0	1
21	M7	I	max	1.273	17	0	1	0	1
22			min	-. 065	1	0	1	0	1
23		J	max	1.273	17	0	1	0	1
24			min	-. 065	1	0	1	0	1
25	M8	I	max	. 094	16	0	1	0	1
26			min	-1.837	17	0	1	0	1
27		J	max	. 094	16	0	1	0	1
28			min	-1.837	17	0	1	0	1
29	M9	I	max	1.268	17	0	1	0	1
30			min	-. 065	1	0	1	0	1
31		J	max	1.268	17	0	1	0	1
32			min	-. 065	1	0	1	0	1
33	M10	I	max	. 094	16	0	1	0	1
34			min	-1.835	17	0	1	0	1
35		J	max	. 094	16	0	1	0	1
36			min	-1.835	17	0	1	0	1
37	M11	I	max	1.28	17	0	1	0	1
38			min	-. 065	1	0	1	0	1
39		J	max	1.28	17	0	1	0	1
40			min	-. 065	1	0	1	0	1
09/18/23								Page 18 of 75	

Envelope Member End Reactions (Continued)

	Member	Memb		Axial[k]	LC	Shear[k]	LC	Moment[k-ft]	LC
41	M12	I	max	. 094	16	0	1	0	1
42			min	-1.829	17	0	1	0	1
43		J	max	. 094	16	0	1	0	1
44			min	-1.829	17	0	1	0	1
45	M13	1	max	1.242	17	0	1	0	1
46			min	-. 065	1	0	1	0	1
47		J	max	1.242	17	0	1	0	1
48			min	-. 065	1	0	1	0	1
49	M14	1	max	. 094	16	0	1	0	1
50			min	-1.918	17	0	1	0	1
51		J	max	. 094	16	0	1	0	1
52			min	-1.918	17	0	1	0	1
53	M15	I	max	1.434	17	0	1	0	1
54			min	-. 066	1	0	1	0	1
55		J	max	1.434	17	0	1	0	1
56			min	-. 066	1	0	1	0	1
57	M16	I	max	. 096	16	0	1	0	1
58			min	-1.967	17	0	1	0	1
59		J	max	. 096	16	0	1	0	1
60			min	-1.967	17	0	1	0	1
61	M17	I	max	. 198	16	0	18	0	1
62			min	-5.997	17	-. 071	9	0	1
63		J	max	2.598	9	-. 003	18	0	1
64			min	. 368	18	-. 024	9	0	1
65	M18	1	max	8.303	9	. 009	9	0	1
66			min	. 166	18	0	18	0	1
67		J	max	-. 078	18	-. 002	18	0	1
68			min	-. 251	9	-. 007	9	0	1
69	M19	1	max	-. 058	18	0	1	0	1
70			min	-2.076	9	0	1	0	1
71		J	max	-. 058	18	0	1	0	1
72			min	-2.076	9	0	1	0	1
73	M20	1	max	1.509	9	0	1	0	1
74			min	. 04	18	0	1	0	1
75		J	max	1.509	9	0	1	0	1
76			min	. 04	18	0	1	0	1
77	M21	1	\max	-. 056	18	0	1	0	1
78			min	-2.029	9	0	1	0	1
79		J	max	-. 056	18	0	1	0	1
80			min	-2.029	9	0	1	0	1
81	M22	I	max	1.319	9	0	1	0	1
82			min	. 039	18	0	1	0	1
83		J	max	1.319	9	0	1	0	1
84			min	. 039	18	0	1	0	1
85	M23	I	max	-. 056	18	0	1	0	1
86			min	-1.94	9	0	1	0	1
87		J	max	-. 056	18	0	1	0	1
88			min	-1.94	9	0	1	0	1
89	M24	I	max	1.357	9	0	1	0	1
90			min	. 039	18	0	1	0	1
91		J	max	1.357	9	0	1	0	1
92			min	. 039	18	0	1	0	1
09/18/23								Page 19	

Envelope Member End Reactions (Continued)

	Member	Memb		Axial [k]	LC	Shear[k]	LC	Moment[k-ft]	LC
93	M25	I	max	-. 056	18	0	1	0	1
94			min	-1.946	9	0	1	0	1
95		J	max	-. 056	18	0	1	0	1
96			min	-1.946	9	0	1	0	1
97	M26	1	max	1.345	9	0	1	0	1
98			min	. 039	18	0	1	0	1
99		J	max	1.345	9	0	1	0	1
100			min	. 039	18	0	1	0	1
101	M27	1	max	-. 057	18	0	1	0	1
102			min	-1.95	9	0	1	0	1
103		J	max	-. 057	18	0	1	0	1
104			min	-1.95	9	0	1	0	1
105	M28	1	max	1.352	9	0	1	0	1
106			min	. 039	18	0	1	0	1
107		J	max	1.352	9	0	1	0	1
108			min	. 039	18	0	1	0	1
109	M29	1	max	-. 055	18	0	1	0	1
110			min	-1.918	9	0	1	0	1
111		J	max	-. 055	18	0	1	0	1
112			min	-1.918	9	0	1	0	1
113	M30	1	max	1.348	9	0	1	0	1
114			min	. 041	18	0	1	0	1
115		J	max	1.348	9	0	1	0	1
116			min	. 041	18	0	1	0	1
117	M31	1	max	-. 064	18	0	1	0	1
118			min	-2.027	9	0	1	0	1
119		J	max	-. 064	18	0	1	0	1
120			min	-2.027	9	0	1	0	1
121	M31A	I	max	2.656	17	1.395	17	0	1
122			min	-. 004	1	-. 211	1	0	1
123		J	max	1.4	9	1.714	9	0	1
124			min	. 042	18	. 125	18	0	1

Envelope Wood Code Checks

	Member	Shape	Code Check	Loc[...		Shear..L	Loc[...	...LC	Fc' ${ }^{\text {ck }}$.Ft' [ksi] Fb' [k.	Fv' [k..	RB	CL	CP	Eqn
1	M1	4.5X5....	. 415	1.896	17	. 016	0	17	1.101	. 7561.194	. 272	6.755	. 995	. 983	3.9-1
2	M2	4.5X5....	. 289	0	9	. 014	2.042	9	1.101	.7561 .194	. 272	6.755	. 995	. 983	3.6.3
3	M4	2X6	. 194	0	17	. 000	0	18	. 875	1.181 .847	. 288	9.018	. 987	. 368	3.9-1
4	M5	2X6	. 102	0	17	. 000	0	18	1.51	1.1861 .856	. 288	7.505	. 991	. 635	3.6.3
5	M6	2X6	. 186	0	17	. 000	0	18	. 875	1.181 .847	. 288	9.018	. 987	. 368	3.9-1
6	M7	2X6	. 102	0	17	. 000	0	18	1.51	1.1861 .856	. 288	7.505	. 991	. 635	3.6.3
7	M8	2X6	. 189	0	17	. 000	0	18	. 875	1.181 .847	. 288	9.018	. 987	. 368	3.9-1
8	M9	2X6	. 102	0	17	. 000	0	18	1.51	1.1861 .856	. 288	7.505	. 991	. 635	3.6.3
9	M10	2X6	. 188	0	17	. 000	0	18	. 875	1.181 .847	. 288	9.018	. 987	. 368	3.9-1
10	M11	2X6	. 103	0	17	. 000	0	18	1.51	1.1861 .856	. 288	7.505	. 991	. 635	3.6.3
11	M12	2X6	. 188	0	17	. 000	0	18	. 875	1.181 .847	. 288	9.018	. 987	. 368	3.9-1
12	M13	2X6	. 100	0	17	. 000	0	18	1.51	1.1861 .856	. 288	7.505	. 991	. 635	3.6.3
13	M14	2X6	. 197	0	17	. 000	0	18	. 875	1.181 .847	. 288	9.018	. 987	. 368	3.9-1
14	M15	2X6	. 115	0	17	. 000	0	18	1.51	1.1861 .856	. 288	7.505	. 991	. 635	3.6.3
15	M16	2X6	. 202	0	17	. 000	0	18	. 875	1.181 .847	. 288	9.018	. 987	. 368	3.9-1
	09/18/23												Page 20 of 75		

Envelope Wood Code Checks (Continued)

	Member Shape		Code Check	Loc[...		Shear..	Loc[...	. LC	Fc' [k...	.Ft' [ksi]	Fb' [k...	Fv' [k.	RB	CL	CP	Eqn
16	M17	4.5×5....	. 380	1.896	17	. 016	0	9	1.101	. 756	1.194	. 272	6.755	. 995	. 983	3.9-1
17	M18	4.5X5....	. 305	0	9	. 014	2.042	9	1.101	. 756	1.194	. 272	6.755	. 995	. 983	3.6.3
18	M19	2X6	. 213	0	9	. 000	0	18	. 875	1.18	1.847	. 288	9.018	. 987	. 368	3.9-1
19	M20	2X6	. 121	0	9	. 000	0	18	1.51	1.186	1.856	. 288	7.505	. 991	. 635	3.6.3
20	M21	2X6	. 208	0	9	. 000	0	18	. 875	1.18	1.847	. 288	9.018	. 987	. 368	3.9-1
21	M22	2X6	. 106	0	9	. 000	0	18	1.51	1.186	1.856	. 288	7.505	. 991	. 635	3.6.3
22	M23	2X6	. 199	0	9	. 000	0	18	. 875	1.18	1.847	. 288	9.018	. 987	. 368	3.9-1
23	M24	2X6	. 109	0	9	. 000	0	18	1.51	1.186	1.856	. 288	7.505	. 991	. 635	3.6.3
24	M25	2X6	. 200	0	9	. 000	0	18	. 875	1.18	1.847	. 288	9.018	. 987	. 368	3.9-1
25	M26	2X6	. 108	0	9	. 000	0	18	1.51	1.186	1.856	. 288	7.505	. 991	. 635	3.6.3
26	M27	2X6	. 200	0	9	. 000	0	18	. 875	1.18	1.847	. 288	9.018	. 987	. 368	3.9-1
27	M28	2X6	. 109	0	9	. 000	0	18	1.51	1.186	1.856	. 288	7.505	. 991	. 635	3.6.3
28	M29	2X6	. 197	0	9	. 000	0	18	. 875	1.18	1.847	. 288	9.018	. 987	. 368	3.9-1
29	M30	2X6	. 108	0	9	. 000	0	18	1.51	1.186	1.856	. 288	7.505	. 991	. 635	3.6.3
30	M31	2X6	. 208	0	9	. 000	0	18	. 875	1.18	1.847	. 288	9.018	. 987	. 368	3.9-1
31	M31A	4X12	. 149	13.93	9	. 162	14.0...	. 9	2.56	1.76	3.646	. 424	11.97	. 95	1	3.9-3

Level, 2X6 OUTLOOKERS

1 piece(s) 2×6 DF No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1212 @ 1' $81 / 4^{\prime \prime}$	1406 (1.50")	Passed (86\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	526 @ 1' ${ }^{\prime \prime}$	1139	Passed (46\%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	-731@ 1' 8 1/4"	975	Passed (75\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.099 @ 4' 3"	0.256	Passed (2L/618)	--	1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.110 @ 4' 3"	0.342	Passed (2L/558)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

Deflection criteria: LL (L/240) and TL (L/180).

- Overhang deflection criteria: $\operatorname{LL}(2 \mathrm{~L} / 240)$ and $\mathrm{TL}(2 \mathrm{~L} / 180)$.
- Right cantilever length exceeds $1 / 3$ member length or $1 / 2$ back span length. Additional bracing should be considered.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- -344 lbs uplift at support located at $11 / 2^{\prime \prime}$. Strapping or other restraint may be required.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Snow	Factored	
1- Hanger on 5 1/2" DF beam	$1.50 "$	Hanger 1	$1.50^{\prime \prime}$	-27	-317	-344	See note 1
2-Stud wall - DF	$1.50 "$	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	123	1089	1212	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 2 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	4 ' $2 \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LU26	$1.50^{\prime \prime}$	N/A	$6-10 \mathrm{dx1.5}$	$4-10 \mathrm{dx1.5}$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $4^{\prime} 3^{\prime \prime}$	$16^{\prime \prime}$	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Level, RB1
1 piece(s) 6 3/4" x 16 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	15128 @ 14' 8 5/8"	15820 (3.75")	Passed (96\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	8896 @ 13' 2 1/4"	22628	Passed (39\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	37830 @ 7' 3 13/16"	69003	Passed (55\%)	1.15	1.0 D + 1.0 S (Alt Spans)
Neg Moment (Ft-lbs)	-5251@ 14' 8 5/8"	54301	Passed (10\%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.278 @ 7' 4 15/16"	0.727	Passed (L/627)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Total Load Defl. (in)	0.314 @ 7' 4 7/8"	0.969	Passed (L/556)	--	1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 0.98 that was calculated using length $\mathrm{L}=14^{\prime} 31 / 8^{\prime \prime}$.
- Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length $L=3^{\prime} 111 / 16^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - DF	$3.75^{\prime \prime}$	$3.75^{\prime \prime}$	$2.58^{\prime \prime}$	1268	9623	10891	Blocking
2 - Stud wall - DF	$3.75 "$	$3.75^{\prime \prime}$	$3.59^{\prime \prime}$	1787	13341	15128	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$17^{\prime} 5{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$17^{\prime} 5 \mathrm{o} \circ \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $17^{\prime} 41 / 2^{\prime \prime}$	N / A	27.1	--	
1 - Uniform (PSF)	0 to $17^{\prime} 41 / 2^{\prime \prime}$ (Front)	$8^{\prime} 9^{\prime \prime}$	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Level, RB2
1 piece(s) 6 3/4" x 15" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology: ASD Member Pitch : 0/12
Member Reaction (lbs)	10618 @ 3 3/4"	10618 (2.42")	Passed (100\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)	
Shear (lbs)	8824 @ 1'63/4"	20571	Passed (43\%)	1.15	1.0 D + 1.0 S (All Spans)	
Pos Moment (Ft-lbs)	42727 @ 8' 10 3/4"	56006	Passed (76\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)	
Live Load Defl. (in)	0.691 @ 9' $61 / 8^{\prime \prime}$	0.940	Passed (L/327)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)	
Total Load Defl. (in)	0.789 @ 9' 6 3/16"	1.253	Passed (L/286)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)	

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 0.96 that was calculated using length $\mathrm{L}=18^{\prime} 91 / 2^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1- Hanger on 15" DF beam	$3.75^{\prime \prime}$	Hanger 1	$2.42^{\prime \prime}$	1335	9742	11077	See note ${ }^{1}$
2 - Stud wall - DF	$3.75^{\prime \prime}$	$3.75^{\prime \prime}$	$1.78^{\prime \prime}$	977	6540	7517	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	19 o o/c	
Bottom Edge (Lu)	$19^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HGUS6.88/12	$4.00 "$	N/A	$56-10 \mathrm{~d}$	$20-10 \mathrm{~d}$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
0 - Self Weight (PLF)	$33 / 4^{\prime \prime}$ to $19^{\prime} 31 / 2^{\prime \prime}$	N / A	24.6	--	
1 - Tapered (PSF)	0 to $19^{\prime} 31 / 2^{\prime \prime}$ (Front)	$8^{\prime} 9^{\prime \prime}$ to $2^{\prime} 6^{\prime \prime}$	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1987 @ 14^{\prime} 111 / 2^{\prime \prime}$	$2813\left(1.50^{\prime \prime}\right)$	Passed (71\%)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Shear (lbs)	$1756 @ 3^{\prime} 1011 / 16^{\prime \prime}$	4658	Passed (38\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Moment (Ft-lbs)	5908 @ $9^{\prime} 1 / 8^{\prime \prime}$	6277	Passed (94\%)	1.15	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Live Load Defl. (in)	0.251 @ $8^{\prime} 103 / 4^{\prime \prime}$	0.614	Passed (L/587)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Total Load Defl. (in)	$0.278 @ 8^{\prime} 1013 / 16^{\prime \prime}$	0.818	Passed (L/530)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)

System : Roof
Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch: $1 / 12$

- Overhang deflection criteria: $\operatorname{LL}(2 L / 240)$ and $T L(2 L / 180)$.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Snow	Factored	
1- Beveled Plate - DF	$5.50 "$	$5.50^{\prime \prime}$	$1.62^{\prime \prime}$	312	2744	3057	Blocking
2 - Hanger on 11 1/4" DF beam	$5.50 "$	Hanger 1	$1.50 "$	214	1926	2140	See note 1

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 5^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	15 o o/c	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	LSSR210-2Z	1.88	N/A	$22-16 \mathrm{dx} \times 2.5$	$18-16 \mathrm{dx2.5}$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $15^{\prime} 5^{\prime \prime}$	$24 "$	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Level, RB3
2 piece(s) 2×12 DF No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12
Member Reaction (lbs)	1476 @ 17' 1 3/4"	2813 (1.50")	Passed (52\%)	--	1.0 D + 1.0 S (Alt Spans)	
Shear (lbs)	1360 @ 4' 3"	4658	Passed (29\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)	
Moment (Ft-lbs)	5013 @ 10' 4 1/4"	5458	Passed (92\%)	1.15	1.0 D + 1.0 S (Alt Spans)	
Live Load Defl. (in)	0.266 @ 10' 2 9/16"	0.699	Passed (L/630)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)	
Total Load Defl. (in)	0.306 @ 10' 2 11/16"	0.933	Passed (L/549)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)	

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	Accessories
1-Stud wall - DF	$3.75^{\prime \prime}$	$3.75^{\prime \prime}$	$1.50^{\prime \prime}$	313	1970	2283	Blocking
2 - Hanger on 11 1/4" DF beam	$3.75^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	204	1337	1541	See note ${ }^{1}$

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6^{\prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$17^{\prime} 2 \mathrm{o} \circ / \mathrm{c}$	

\bullet-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 Face Mount Hanger	LUS28-2	$2.00 "$	N/A	$6-16 \mathrm{~d}$	$4-16 \mathrm{~d}$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $17^{\prime} 13 / 4^{\prime \prime}$	N / A	8.6	--	
1 - Uniform (PSF)	0 to $17^{\prime} 51 / 2^{\prime \prime}$ (Front)	$1^{\prime} 3^{\prime \prime}$	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Level, RB4

1 piece(s) 5 1/8" x 6" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4675 @ 2' 5 5/8"	12012 (3.75")	Passed (39\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	2372 @ 1'93/4"	6247	Passed (38\%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	0 @ N/A	N/A	Passed (N/A)	--	N/A
Neg Moment (Ft-lbs)	-4905 @ 2' 5 5/8"	5452	Passed (90\%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.183 @ 5' $11 / 2^{\prime \prime}$	0.266	Passed (2L/348)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Total Load Defl. (in)	0.211 @ 5' 1 1/2"	0.354	Passed (2L/302)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)

System : Roof Member Type: Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: $\mathrm{LL}(2 \mathrm{~L} / 240)$ and $\mathrm{TL}(2 \mathrm{~L} / 180)$.
- Right cantilever length exceeds $1 / 3$ member length or $1 / 2$ back span length. Additional bracing should be considered.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length $L=4^{\prime} 93 / 4^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Snow	Factored	
1- Hanger on 6" DF beam	$3.75^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	-261	-1804	-2065	See note 1
2- Beam - DF	$3.75 "$	$3.75^{\prime \prime}$	$1.50^{\prime \prime}$	617	4058	4675	None

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 10^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$4^{\prime} 10^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
Support	Face Mount Hanger	Connector not found	N/A	N/A	N/A	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
0 - Self Weight (PLF)	$33 / 4^{\prime \prime}$ to $5^{\prime} 11 / 2^{\prime \prime}$	N / A	7.5	--	
1 - Uniform (PSF)	0 to $5^{\prime} 11 / 2^{\prime \prime}$ (Front)	$1^{\prime} 4 "$	17.0	150.0	Default Load
2 - Point (Ib)	$5^{\prime} 1^{\prime \prime}$ (Front)	N / A	204	1337	Linked from: RB3, Support 2

ForteWEB Software Operator

Job Notes

MEMBER REPORT

Level, RB5
1 piece(s) 2×12 DF No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1065 @ 33 / 4^{\prime \prime}$	$1406(1.50 ")$	Passed (76\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$865 @ 1^{\prime} 3 "$	2329	Passed (37\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$2663 @ 5^{\prime} 33 / 4^{\prime \prime}$	2729	Passed (98\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Live Load Defl. (in)	$0.148 @ 55^{\prime} 33 / 4^{\prime \prime}$	0.500	Passed (L/810)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Building Use : Residential					
Building Code : IBC 2018					
Dotal Load Defl. (in)	$0.168 @ 5^{\prime} 33 / 4^{\prime \prime}$	0.667	Passed (L/713)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Factored	
1 - Hanger on $111 / 4$ " DF beam	$3.75{ }^{\prime \prime}$	Hanger ${ }^{1}$	1.50"	134	996	1130	See note ${ }^{1}$
2 - Hanger on $111 / 4$ " DF beam	3.75"	Hanger ${ }^{1}$	1.50"	134	996	1130	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$1^{\prime} 10{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$10^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LUS28	$1.75^{\prime \prime}$	N / A	$6-10 \mathrm{dx1.5}$	$4-10 \mathrm{~d}$	
2 - Face Mount Hanger	LUS28	$1.75^{\prime \prime}$	N / A	$6-10 \mathrm{~d} \times 1.5$	$4-10 \mathrm{~d}$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
0 - Self Weight (PLF)	$33 / 4^{\prime \prime}$ to $10^{\prime} 33 / 4^{\prime \prime}$	N / A	4.3	--	
1 - Uniform (PSF)	0 to $10^{\prime} 71 / 2^{\prime \prime}$ (Front)	$1^{\prime} 3{ }^{\prime \prime}$	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

PASSED

Level, RB6

2 piece(s) 2×12 DF No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$3996 @ 2 ' 77 / 8^{\prime \prime}$	$7031(3.75 ")$	Passed (57\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$1665 @ 11^{\prime} 63 / 4^{\prime \prime}$	4658	Passed (36\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Moment (Ft-lbs)	-4116 @ $2^{\prime} 77 / 8^{\prime \prime}$	5458	Passed (75\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.050 @ 0$	0.266	Passed (2L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Total Load Defl. (in)	$0.056 @ 0$	0.354	Passed (2L/999+)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Left cantilever length exceeds $1 / 3$ member length or $1 / 2$ back span length. Additional bracing should be considered.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Snow	Factored	
	$3.75^{\prime \prime}$	$3.75^{\prime \prime}$	$2.13^{\prime \prime}$	484	3512	3996	None
2- Beam - DF	$3.75^{\prime \prime}$	$3.75^{\prime \prime}$	$1.50^{\prime \prime}$	-111	-1065	-1176	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$5^{\prime} 8 " 0 / \mathrm{c}$	
Bottom Edge (Lu)	$5^{\prime} 8 " 0 / \mathrm{c}$	

\bullet Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $5^{\prime} 71 / 2^{\prime \prime}$	N / A	8.6	--	
1- Uniform (PSF)	0 to $5^{\prime} 71 / 2^{\prime \prime}$ (Front)	2^{\prime}	17.0	150.0	Default Load
2 - Point (Ib)	$1^{\prime \prime}$ (Front)	N / A	134	996	Linked from: RB5, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Trevor Steelsmit'09/18/23	
Snake River Engineering	
(208) 453-6512	
trevor@snakeriverengineering.com	

Level, FB1
2 piece(s) 1 3/4" x 18" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$893 @ 4^{\prime} 61 / 2^{\prime \prime}$	$3938(1.50 ")$	Passed (23\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$281 @ 3^{\prime} 1 / 2^{\prime \prime}$	11970	Passed (2\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$977 @ 2^{\prime} 41 / 4^{\prime \prime}$	38753	Passed (3\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.002 @ 2^{\prime} 41 / 4^{\prime \prime}$	0.109	Passed (L/999+)	--	$1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~L} \mathrm{(All} \mathrm{Spans)}$
Total Load Defl. (in)	$0.003 @ 2^{\prime} 41 / 4^{\prime \prime}$	0.219	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1-Stud wall - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	255	706	961	Blocking
2 - Hanger on 18" DF beam	$3.50^{\prime \prime}$	Hanger 11	$1.50^{\prime \prime}$	263	744	1007	See note ${ }^{1}$

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 7 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$4^{\prime} 7 \mathrm{\prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	IUS3.56/11.88	$2.00 "$	N/A	$12-10 \mathrm{dx} \times 1.5$	$2-10 \mathrm{dx} 1.5$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Comments
0 - Self Weight (PLF)	0 to $4^{\prime} 61 / 2^{\prime \prime}$	N/A	18.4	--	
1 - Uniform (PSF)	0 to $4^{\prime} 10^{\prime \prime}$ (Front)	$7^{\prime} 6^{\prime \prime}$	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Level, FB2
2 piece(s) 1 3/4" x 18" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1935 @ 4 "$	$12031(5.50 ")$	Passed (16\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$1695 @ 1^{\prime} 111 / 2^{\prime \prime}$	11970	Passed (14\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$7409 @ 7^{\prime} 615 / 16^{\prime \prime}$	38753	Passed (19\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.098 @ 9^{\prime} 11 / 16^{\prime \prime}$	0.456	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.145 @ 9^{\prime} 17 / 16^{\prime \prime}$	0.913	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Available	Required	Dead	Floor Live	Factored	Accessories	
1-Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$1.50^{\prime \prime}$	604	1331	1935	Blocking
2 - Beam - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$1.50 "$	461	927	1387	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$18^{\prime} 11 \mathrm{o} o / \mathrm{c}$	
Bottom Edge (Lu)	$18^{\prime} 11 \mathrm{o} 0 / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	$\begin{gathered} \text { Dead } \\ (0.90) \end{gathered}$	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 18' 11"	N/A	18.4	--	
1 - Uniform (PSF)	0 to 18' 11" (Front)	2^{\prime}	12.0	40.0	Default Load
2 - Point (lb)	4' 6" (Front)	N/A	263	744	Linked from: FB1, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Trevor Steelsmith09/18/23	
Snake River Engineering	
(208) 453-6512	
trevor@snakeriverengineering.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3826 @ 3 3/4"	4997 (1.50")	Passed (77\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	3289 @ 1' 3 3/4"	12495	Passed (26\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	13629 @ 7' 5 1/4"	28290	Passed (48\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.314 @ 7' 5 1/4"	0.356	Passed (L/544)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.375 @ 7' 5 1/4"	0.712	Passed (L/456)	--	1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length $\mathrm{L}=14^{\prime} 3^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Factored	
1 - Hanger on 12" DF beam	$3.75{ }^{\prime \prime}$	Hanger ${ }^{1}$	1.50 "	642	3347	3989	See note ${ }^{1}$
2 - Hanger on 12" DF beam	$3.75{ }^{\prime \prime}$	Hanger ${ }^{1}$	1.50"	642	3347	3989	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$14^{\prime} 3^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$14^{\prime} 3 \mathrm{~J}^{\circ} / \mathrm{c}$	

\bullet-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HGUS5.25/10	$4.000^{\prime \prime}$	N/A	$46-10 \mathrm{~d}$	$16-10 \mathrm{~d}$	
2 - Face Mount Hanger	HGUS5.25/10	$4.00^{\prime \prime}$	N/A	$46-10 \mathrm{~d}$	$16-10 \mathrm{~d}$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	$33 / 4^{\prime \prime}$ to $14^{\prime} 63 / 4^{\prime \prime}$	N / A	14.9	--	
1 - Uniform (PSF)	0 to $14^{\prime} 101 / 2^{\prime \prime}$ (Front)	6^{\prime}	12.0	75.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Weyerhaeuser

Level, DECK JOISTS

2 piece(s) 2×10 DF No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Factored	
1 - Hanger on $91 / 4 "$ DF beam	3.50"	Hanger ${ }^{1}$	1.50"	101	629	730	See note ${ }^{1}$
2 - Hanger on $91 / 4 "$ DF beam	3.50 "	Hanger ${ }^{1}$	1.50"	101	629	730	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$12^{\prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$12^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LUS28-2	$2.00^{\prime \prime}$	N/A	$6-10 \mathrm{dx1.5}$	$3-10 \mathrm{~d}$	
2 - Face Mount Hanger	LUS28-2	$2.00^{\prime \prime}$	N/A	$6-10 \mathrm{dx1.5}$	$3-10 \mathrm{~d}$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $(\mathbf{0 . 9 0})$	Snow $(\mathbf{1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $12^{\prime} 7^{\prime \prime}$	$16^{\prime \prime}$	12.0	75.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/wood products/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Beam

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.05.25
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: --None--

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : IBC 2018

Material Properties

Analysis Method Allowable Strength Design	Fy: Steel Yield:
Beam Bracing:	Beam is Fully Braced against lateral-torsional buckling
Bending Axis:	Major Axis Bending

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loading
Uniform Load: D $=0.0120, \mathrm{~L}=0.040 \mathrm{ksf}$, Tributary Width $=10.0 \mathrm{ft}$
Uniform Load : D $=0.0120$ ksf, Tributary Width $=11.50 \mathrm{ft}$
Uniform Load: $D=0.0170, S=0.150 \mathrm{ksf}$, Tributary Width $=25.0 \mathrm{ft}$

DESIGN SUMMARY				Design OK
Maximum Bending Stress Ratio =	0.673 : 1	Maximum Shear Stress Ratio = Section used for this span		0.245 : 1
Section used for this span	W33x118			W 33×118
Ma : Applied	696.872 k -ft		Va: Applied	79.643 k
Mn / Omega : Allowable	1,035.429 k-ft		Vn/Omega : Allowable	325.060 k
Load Combination	+D+S	Load	Combination on of maximum on span	$\begin{aligned} & +\mathrm{D}+\mathrm{S} \\ & 0.000 \mathrm{ft} \end{aligned}$
Span \# where maximum occurs	Span \# 1	Span	\# where maximum occurs	Span \# 1
Maximum Deflection				
Max Downward Transient Deflection	0.743 in Ratio $=$	564 >=480.	Span: 1 : S Only	
Max Upward Transient Deflection	0 in Ratio $=$	$0<480.0$		
Max Downward Total Deflection	0.902 in Ratio $=$	$466>=240$.	Span: 1 : +D+S	
Max Upward Total Deflection	0 in Ratio $=$	$0<240.0$	n/a	

Maximum Forces \& Stresses for Load Combinations

Overall Maximum Deflections

Load C@pdiciation	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" DreafgeLocadiof in Span
+D+S	1	0.9022	17.600		0.00000 .000

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Beam	
LIC\#:KW-06013353, Build:20.23.05.25	Project File: 05 Beams.ec6
DESCRIPTION: --None--	(c) ENERCALC INC 1983-2023

Vertical Reactions	Support notation : Far left is \#'	
Load Combination	Support 1	Support 2
Max Upward from all Load Conditions in KIPS		
Max Upward from Load Combinations	79.643	79.643
Max Upward from Load Cases	79.643	79.643
D Only	65.625	65.625
+D+L	14.018	14.018
+D+S	21.018	21.018
+D+0.750L	79.643	79.643
+D+0.750L+0.750S	19.268	19.268
+0.60D	68.486	68.486
L Only	8.411	8.411
S Only	7.000	7.000

WOOD HEADER ALLOWABLE LOADS (kips/ft)											
Load Duration Factor: 1.15 LVL Grade: 2.0E				```Top Chord Bracing: 2'-0" O.C. \\ Max TL Deflection: L/240, 0.75in \\ Repetitive Stress Increase: No```							
	Header Span										
Header Type	2'	3'	4'	5'	6'	8'	10'	12'	14'	16'	18'
(2) 2x4 DF Stud	1.15	0.69	0.29	0.22	0.12	NA	NA	NA	NA	NA	NA
(3) 2×4 DF Stud	1.84	1.04	0.46	0.35	0.18	NA	NA	NA	NA	NA	NA
(2) 2×6 DF \#2	3.34	1.44	0.83	0.48	0.36	0.20	0.12	NA	NA	NA	NA
(3) 2×6 DF \#2	5.06	2.19	1.27	0.72	0.55	0.30	0.18	0.13	NA	NA	NA
(2) 2×8 DF \#2	5.41	2.30	1.27	0.80	0.59	0.32	0.20	0.14	0.09	NA	NA
(3) 2×8 DF \#2	8.74	3.39	2.19	1.18	0.97	0.53	0.33	0.23	0.16	0.12	NA
(2) 2×10 DF \#2	8.05	3.39	1.96	1.18	0.89	0.48	0.31	0.21	0.15	0.10	NA
(3) 2×10 DF \#2	13.23	5.18	3.22	1.80	1.38	0.82	0.52	0.36	0.25	0.20	0.15
(2) 2×12 DF \#2	10.81	4.83	2.65	1.60	1.15	0.67	0.41	0.29	0.21	0.15	0.12
(3) 2x12 DF \#2	17.94	7.02	4.49	2.40	1.96	1.10	0.70	0.48	0.35	0.26	0.21
(2) $1-3 / 4 \times 7-1 / 4$ LVL	13.80	6.79	3.80	2.40	1.61	0.94	0.52	0.30	0.18	0.12	NA
(3) 1-3/4x7-1/4 LVL	20.70	10.47	5.64	3.50	2.53	1.38	0.79	0.45	0.28	0.17	NA
(2) 1-3/4×9-1/2 LVL	24.73	10.47	5.64	3.75	2.65	1.50	0.92	0.63	0.39	0.24	0.15
(3) 1-3/4×9-1/2 LVL	37.15	17.25	8.51	6.00	4.03	2.30	1.38	0.95	0.60	0.37	0.22
(2) 1-3/4×11-7/8 LVL	40.71	17.25	8.86	6.00	4.49	2.53	1.61	1.12	0.82	0.53	0.32
(3) 1-3/4×11-7/8 LVL	61.30	24.15	13.23	8.75	6.67	3.80	2.42	1.61	1.15	0.79	0.48
(2) 1-3/4x14 LVL	56.47	24.15	12.54	8.00	5.75	3.45	2.19	1.50	1.13	0.86	0.54
(3) 1-3/4x14 LVL	85.10	28.75	18.86	12.00	8.63	5.29	3.34	2.30	1.61	1.27	0.81

DU (6) Beam Calculations

	Additional Drift	Roof	Floor	Deck	Wall	Total Load

Calculated Prop.								
A	25.38 in^2							
	111.15 in $^{\text {4 }}$							
s	30.66 in 3							
RB	6.62							
Emin'	580,000 psi							
Fbe	15,858 psi							
Fb^{*}	1,242 pi							
cL	1							

Shear and Moment	7,658 1							
v	851 lbs							

Stress								
fb	250 psi							
Fb'	1,237 psi							
fb/Fb'	0.20							
fv	50 psi							
Fv'	207 psi							
fv/Fv'	0.24							
Max Ratio	0.24							
	Pass							
Deflection								
$\Delta \operatorname{Tr}^{2}$	0.01 in							
	L/6,192							
טu	0.00 in							
	L/11,709							
	Pass							

DU (5) Beam Calculations

Trib	Additional Drift	Roof	Floor	Deck	Wall	Total Load	Total Load
	0.0	3.5	0	0	9.33		761.8 plf
Dead Load	-	59.5	0.0	0.0	177.3	236.8 plf	
Live / Snow Load	0	525.0	0.0	0.0		525.0 plf	

Description:	16.0 ft Opening	5.0 ft Opening	10.0 ft Opening	3.5 ft Opening				
Header Callout	(3)11-7/8"	4×8	(3)9-1/2"	4×8				
Header Callout	LVL 2.0E	DF-L No. 2	LVL 2.0E	DF-L No. 2				
Trimmers	(2) 2×6	(1) 2×6	(2) 2×6	(1) 2×6				
	DF-L No. 2	DF-L No. 2	DF-L No. 2	DF-L No. 2				
King Studs	(6) 2×6 DF-L No. 2	(3) 2×6 DF-L No. 2	(4) 2×6 DF-L No. 2	(2) 2×6 DF-L No. 2				

Wood Design							
Species Grade	LVL	DF-L	LVL	DF-L			
	Width	5.25 in	No. 2	$2.0 E$			

Reaction							
Dead Load	1,894 lbs	592 lbs	1,184 lbs	414 lbs			
Live Load	4,200 lbs	1,313 lbs	2,625 lbs	919 lbs			

Adjustment Factors

| Cd | 1.15 | 1.15 | 1.15 | 1.15 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CF | 1 | 1.2 | 1.1 | 1.2 | | |

Material Properties

Fb	2,900 psi	900 psi	2,900 psi	900 psi				
Fv	285 psi	180 psi	285 psi	180 psi				
E	2,000,000 psi	1,600,000 psi	2,000,000 psi	1,600,000 psi				
Emin	1,016,535 psi	580,000 psi	1,016,535 psi	580,000 psi				

Calculated Prop.								
A	$62.34 \mathrm{in}^{\wedge} 2$	$25.38 \mathrm{in}^{\wedge} 2$	$49.88 \mathrm{in}^{\wedge} 2$	25.38 in^2				
1	732.62 in^4	$111.15 \mathrm{in}^{\wedge} 4$	$375.10 \mathrm{in}^{\wedge} 4$	111.15 in^4				
S	123.39 in^3	$30.66 \mathrm{in}^{\wedge} 3$	$78.97 \mathrm{in}^{\wedge} 3$	30.66 in^3				
RB	12.34	8.41	8.79	7.16				
Emin'	1,016,535 psi	580,000 psi	1,016,535 psi	580,000 psi				
FbE	8,014 psi	9,837 psi	15,793 psi	13,592 psi				
Fb*	3,335 psi	1,242 psi	3,669 psi	1,242 psi				
CL	1	1	1	1				

Shear and Moment								
M	292,520 lb-in	28,566 lb-in	$114,266 \mathrm{lb}$-in	13,998 lb-in				
v	6,094 lbs	1,904 lbs	3,809 lbs	1,333 lbs				

Stress								
fb	2,371 psi	932 psi	1,447 psi	457 psi				
Fb^{\prime}	3,226 psi	1,233 psi	3,615 psi	1,236 psi				
fb/Fb'	0.73	0.76	0.40	0.37				
fv	147 psi	113 psi	115 psi	79 psi				
Fv'	328 psi	207 psi	328 psi	207 psi				
$\mathrm{fv} / \mathrm{Fv}^{\prime}$	0.45	0.54	0.35	0.38				
Max Ratio	0.73	0.76	0.40	0.38				
	Pass	Pass	Pass	Pass				
Deflection								
$\Delta T L$	0.77 in	0.06 in	0.23 in	0.01 in				
	L/250	L/996	L/525	L/2,904				
$\Delta \mathrm{LL}$	0.53 in	0.04 in	0.16 in	0.01 in				
	L/363	L/1,445	L/762	L/4,214				
	Pass	Pass	Pass	Pass				

DU (4) Beam Calculations

	Additional Drift	Roof	Floor	Deck	Wall	Total Load

Reaction								
Dead Load	1,081 lbs							
Live Load	5,625 lbs							

Adjustment Factors								
Cd	1.15							
CF	1.1							

Calculated Prop.								
A	33.25 in^2							
	$250.07 \mathrm{in}^{\wedge} 4$							
S	52.65 in^3							
RB	9.79							
Emin'	1,016,535 psi							
FbE	12,726 psi							
Fb*	3,669 psi							
CL	1							

Shear and Moment								
M	100,585 Ib-in							
v	6,706 lbs							

Stress								
fb	1,911 psi							
Fb^{\prime}	3,598 psi							
$\mathrm{fb} / \mathrm{Fb}^{\prime}$	0.53							
fv	303 psi							
Fv'	328 psi							
fv/Fv'	0.92							
Max Ratio	0.92							
	Pass					,	,	
Deflection								
$\Delta \mathrm{t}$	0.08 in							
	L/796							
$\Delta \mathrm{LL}$	0.06 in							
	L/948							
	Pass							

DU (3) Beam Calculations

	Additional Drift	Roof	Floor	Deck	Wall	Total Load	Total Load
Trib	0.0	16.25	0	0	4.83		2,805.5 plf
Dead Load Live / Snow Load	-	276.3 2437.5	0.0 0.0	0.0	91.8	${ }_{2}^{368.0} \mathbf{~ p l f ~}$	

| Wood Design | | | | | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species
 Grade | $L V L$ | $D F E-L$ | $D F / D F$ | | | | |
| | Width | 5.25 in | No.2 | $24 F-V 4$ | | | |

Reaction								
Dead Load Live Load	2,024 lbs	644 lbs	2,714 lbs					
	13,406 lbs	4,266 lbs	17,977 lbs					

Load								
14	11.0 ft	3.5 ft	14.8 ft					
le	21.4 ft	7.2 ft	29.3 ft					

Adjustment Factors

| Cd | 1.15 | 1.15 | 1.15 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CF | 1 | 1 | | | | |

Material Properties

Fb	2,900 psi	900 psi	2,400 psi					
Fv	285 psi	180 psi	265 psi					
E	2,000,000 psi	1,600,000 psi	1,850,000 psi					
Emin	1,016,535 psi	580,000 psi	950,000 psi					

Calculated Prop.								
A	$73.50 \mathrm{in}^{\wedge} 2$	$39.38 \mathrm{in}^{\wedge} 2$	$110.25 \mathrm{in}^{\wedge} 2$					
1	1,200.50 in^4	$415.28 \mathrm{in}^{\wedge} 4$	4,051.69 in^4					
S	171.50 in^3	$73.83 \mathrm{in}^{\wedge} 3$	$385.88 \mathrm{in}^{\wedge} 3$					
RB	11.43	8.91	16.37					
Emin'	1,016,535 psi	580,000 psi	950,000 psi					
FbE	9,339 psi	8,759 psi	4,257 psi					
Fb*	3,335 psi	1,035 psi	2,760 psi					
CL	1	1	1					

| Shear and Moment | | | | | | |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | M | $509,202 \mathrm{lb}-\mathrm{in}$ | $51,551 \mathrm{lb}-\mathrm{in}$ | $915,564 \mathrm{lb}-\mathrm{in}$ | | |
| | $15,430 \mathrm{lbs}$ | $4,910 \mathrm{lbs}$ | $20,691 \mathrm{lbs}$ | | | |

Stress								
fb	2,969 psi	698 psi	2,373 psi					
Fb'	3,248 psi	1,028 psi	2,565 psi					
$\mathrm{fb} / \mathrm{Fb}^{\prime}$	0.91	0.68	0.92					
fv	315 psi	187 psi	282 psi					
Fv^{\prime}	328 psi	207 psi	305 psi					
$\mathrm{fv} / \mathrm{Fv}^{\prime}$	0.96	0.90	0.92					
Max Ratio	0.96	0.90	0.92					
	Pass	Pass	Pass					
Deflection								
$\Delta T L$	0.38 in	0.01 in	0.40 in					
	L/343	L/2,946	L/444					
$\Delta \mathrm{LL}$	0.33 in	0.01 in	0.35 in					
	L/395	L/3,391	L/511					
	Pass	Pass	Pass					

DU (2) Beam Calculations

	Additional Drift	Roof	Floor	Deck	Wall	Total Load	
	0.0	13	0	0	3.33		
	Total Load						
Trib	$2,234.3 \mathrm{plf}$						

| Load |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Calculated Prop.								
A	25.38 in 2							
	$111.15 \mathrm{in}^{\wedge} 4$							
- ${ }^{\text {s }}$	30.66 in 3							
RB	6.62							
Emin'	580,000 psi							
Fbe	15,858 psi							
Fb^{*}	1,242 psi							
cL	1							

rand Moment $\quad \mathrm{M}$	$30,163 \mathrm{lb-in}$							
v	3,351 libs							

stress		,	,	,	,			
fb	984 psi							
Fb'	1,237 psi							
fb/Fb'	0.80							
fv	198 psi							
Fv'	207 psi							
fv/Fv'	0.96							
Max Ratio	0.96							
	Pass							
Deflection								
$\Delta \mathrm{L}$	0.02 in							
	L/1,572							
su	0.02 in							
	L/1,801							
	Pass							

DU Beam Calculations

Additional Drift	Roof	Floor	Deck	Wall	Total Load	
	0.0	3.5	0	0	4.83	
Total Load						

Wood Design								
Species	DF-L	DF-L						
Grade	No. 2	No. 2						
Width	3.50 in	3.50 in						
Depth	7.25 in	7.25 in						

Reaction								
Dead Load	265 lbs	378 lbs						
Live Load	919 lbs	1,313 lbs						

Load								
14	3.5 ft	5.0 ft						
le	7.2 ft	10.0 ft						

| Adjustment Factors | | | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Cd | 1.15 | 1.15 | | | |
| | 1.2 | 1.2 | | | | |

Material Properties								
Fb	900 psi	900 psi						
Fv	180 psi	180 psi						
E	1,600,000 psi	1,600,000 psi						
Emin	580,000 psi	580,000 psi						

Calculated Prop.								
A	$25.38 \mathrm{in}^{\wedge} 2$	$25.38 \mathrm{in}^{\wedge} 2$						
1	$111.15 \mathrm{in}^{\wedge} 4$	$111.15 \mathrm{in}^{\wedge} 4$						
S	30.66 in^3	$30.66 \mathrm{in}^{\wedge} 3$						
RB	7.16	8.41						
Emin'	580,000 psi	580,000 psi						
FbE	13,592 psi	9,837 psi						
Fb*	1,242 psi	1,242 psi						
CL	1	1						

| Shear and Moment | | | | | | |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M | $12,426 \mathrm{lb}-\mathrm{in}$ | $25,360 \mathrm{lb}-\mathrm{in}$ | | | | |
| | $1,183 \mathrm{lbs}$ | $1,691 \mathrm{lbs}$ | | | | |

Stress								
fb	405 psi	827 psi						
Fb^{\prime}	1,236 psi	1,233 psi						
$\mathrm{fb} / \mathrm{Fb}^{\prime}$	0.33	0.67						
fv	70 psi	100 psi						
Fv'	207 psi	207 psi						
$\mathrm{fv} / \mathrm{Fv}^{\prime}$	0.34	0.48						
Max Ratio	0.34	0.67						
	Pass	Pass						
Deflection								
$\Delta T \mathrm{~L}$	0.01 in	0.05 in						
	L/3,271	L/1,122						
$\Delta \mathrm{LL}$	0.01 in	0.04 in						
	L/4,214	L/1,445						
	Pass	Pass						

WOOD TALL WALL \& KING STUD ALLOWABLE LOADS (plf):							
Load Duration Factor: 1.6 Max Vert. Load: 50 lbs				Max Deflection: L/180			
	Height						
King Stud	12'	14'	16'	18'	20'	22'	24'
(1) 2x4 Stud	12.8	NA	NA	NA	NA	NA	NA
(2) 2×4 Stud	25.6	NA	NA	NA	NA	NA	NA
(3) 2×4 Stud	38.4	NA	NA	NA	NA	NA	NA
(1) 2×6 DF \#2	57.0	35.8	24.1	16.9	NA	NA	NA
(2) 2×6 DF \#2	114.0	71.6	48.2	33.8	NA	NA	NA
(3) 2×6 DF \#2	171.0	107.4	72.3	50.7	NA	NA	NA
(1) 2x8 DF \#2	130.0	81.7	55.0	38.7	28.2	21.2	16.3
(2) 2×8 DF \#2	260.0	163.4	110.0	77.4	56.4	42.4	32.6
(3) 2x8 DF \#2	390.0	245.1	165.0	116.1	84.6	63.6	48.9
(1) 2×6 LSL	67.8	42.7	28.5	20.0	14.7	NA	NA
(2) 2x6 LSL	135.6	85.4	57.0	40.0	29.4	NA	NA
(3) 2×6 LSL	203.4	128.1	85.5	60.0	44.1	NA	NA
(1) 2x8 LSL	155.0	98.3	65.5	46.0	33.5	25.2	19.5
(2) 2x8 LSL	310.0	196.6	131.0	92.0	67.0	50.4	39.0
(3) 2x8 LSL	465.0	294.9	196.5	138.0	100.5	75.6	58.5

*NOTE 1: this table combined with trimmer table to determine combined stress on each common wall stud. *NOTE 2: allowable loads are interpolated at heights not in 2' increments.

WOOD TRIMMER ALLOWABLE LOADS (kips):

Load Duration Factor: 1.0 Eccentricity: 0 "

	Height						
Trimmer Type	8'	10^{\prime}	12'	14'	16^{\prime}	18'	20'
(1) 2×4 Stud	2.4	1.7	1.2	NA	NA	NA	NA
(2) 2×4 Stud	4.9	3.4	2.4	NA	NA	NA	NA
(3) 2×4 Stud	7.1	5.0	3.6	NA	NA	NA	NA
(1) 2×6 DF \#2	5.1	5.1	5.0	3.8	3.0	NA	NA
(2) 2×6 DF \#2	10.3	10.3	10.1	7.7	6.0	NA	NA
(3) 2×6 DF \#2	15.4	15.4	15.1	11.6	9.1	NA	NA
(1) 2×8 DF \#2	6.7	6.7	6.7	6.7	6.4	5.3	4.4
(2) 2×8 DF \#2	13.5	13.5	13.5	13.5	12.9	10.6	8.8
(3) 2×8 DF \#2	20.3	20.3	20.3	20.3	19.4	15.9	13.2

*NOTE 1: this table combined with king stud table to determine combined stress on each common wall stud.
*NOTE 2: allowable loads are interpolated at heights not in 2 ' increments.

UNBRACED WOOD COLUMN ALLOWABLE LOADS (kips)								
								Compression Perp. To Grain
Column Type	Unbraced Height							
	8'	10'	12'	14'	16'	18'	20^{\prime}	
(2) 2x4 DF \#2	4.50	3.00	2.10	SR	SR	SR	SR	6.50
(3) 2×4 DF \#2	8.80	5.90	4.20	3.20	SR	SR	SR	9.80
4x4 DF \#2	7.00	4.60	3.30	2.40	SR	SR	SR	7.60
(2) 2×6 DF \#2	7.20	4.70	3.30	SR	SR	SR	SR	10.30
(3) 2x6 DF \#2	20.40	14.70	10.70	8.00	6.20	4.90	SR	15.40
6x6 DF \#2	18.00	15.70	13.00	10.50	8.50	6.90	5.70	18.90
6x8 DF \#2	24.50	21.40	17.80	14.30	11.60	9.40	7.80	25.70
6x10 DF \#2	31.40	27.10	22.50	18.20	14.70	12.00	9.90	32.60
8x8 DF \#2	36.60	34.60	31.90	28.50	24.90	21.30	18.20	35.20
8x10 DF \#2	46.30	43.90	40.40	36.20	31.50	27.00	23.10	44.50
8x12 DF \#2	56.20	53.10	49.00	43.80	38.10	32.70	28.00	53.40
10x10 DF \#2	60.50	58.80	56.50	53.40	49.60	45.20	40.50	56.40

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Column	Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.05.25	SNAKE RIVER ENGINEERING

DESCRIPTION: --None--

Code References

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Steel Section Name: HSS7x5x5/16		Overall Column Height	16 ft
Analysis Method : A	Allowable Strength	Top \& Bottom Fixity	Top \& Bottom Pinned
Steel Stress Grade		Brace condition	
Fy : Steel Yield	36.0 ksi	Fully braced against	ckling ABOUT X -X Axis
E : Elastic Bending Modulus	us 29,000.0 ksi	Unbraced Length for	ckling ABOUT Y-Y Axis
Applied Loads		Service loads ent	d. Load Factors will be

Column self weight included : 373.440 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $16.0 \mathrm{ft}, \mathrm{D}=14.020, \mathrm{~L}=7.0, \mathrm{~S}=65.630 \mathrm{k}$
DESIGN SUMMARY

Bending \& Shear Check Results			
PASS Max. Axial+Bending Stress Ratio =	0.9424: 1	Maximum Load Reactions .	
Load Combination	+D+S	Top along X-X	0.0 k
Location of max.above base	0.0 ft	Bottom along $\mathrm{X}-\mathrm{X}$	0.0 k
At maximum location values are		Top along Y-Y	0.0 k
Pa : Axial	80.023 k	Bottom along Y-Y	0.0 k
Pn / Omega : Allowablı	84.912 k		
Ma-x : Applied	$0.0 \mathrm{k}-\mathrm{ft}$	Maximum Load Deflections . .	
Mn-x / Omega : Allowable	26.946 k-ft	Along Y-Y $\quad 0.0$ in at	0.0 ft above base
Ma-y : Applied	$0.0 \mathrm{k}-\mathrm{ft}$		
Mn-y / Omega : Allowable	21.377 k-ft	Along X-X 0.0 in at for load combination :	0.0 ft above base
PASS Maximum Shear Stress Ratic	0.0: 1		
Load Combination	0.0		
Location of max.above base	0.0 ft		
At maximum location values are			
Va : Applied Vn / Omega : Allowable	$\begin{aligned} & 0.0 \mathrm{k} \\ & 0.0 \mathrm{k} \end{aligned}$		

Load Combination Results

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Column	Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.05.25	SNAKE RIVER ENGINEERING

DESCRIPTION: --None--

Extreme Reactions

Item	Axial Reaction		X-X Axis Reaction @ Base @ Top	k	Y-Y Axis Reaction @ Base @ Top	Mx - End Moments k-ft @ Base @ Top	My - End Moments @ Base @ Top
	Extreme Value	@ Base					
Axial @ Base	Maximum	80.023					
	Minimum	7.000					
Reaction, X-X Axis Base	Maximum	14.393					
	Minimum	14.393					
Reaction, Y-Y Axis Base	Maximum	14.393					
	Minimum	14.393					
Reaction, X-X Axis Top	Maximum	14.393					
	Minimum	14.393					
Reaction, Y-Y Axis Top	Maximum	14.393					
	Minimum	14.393					
Moment, X-X Axis Base	Maximum	14.393					
	Minimum	14.393					
Moment, Y-Y Axis Base	Maximum	14.393					
	Minimum	14.393					
Moment, X-X Axis Top	Maximum	14.393					
	Minimum	14.393					
Moment, Y-Y Axis Top	Maximum	14.393					
	Minimum	14.393					

Maximum Deflections for Load Combinations

$\mathrm{Ycg} \quad=\quad 0.000$ in

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Column	Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.05.25	SNAKE RIVER ENGINEERING ENERCALC INC 1983-2023

LIC\#: KW-06013353, Build:20.23.05.25
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: --None--

Sketches

Individual Footing Design

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof				
Roof Dead	(17psf)	(12.5ft)	$=$	213plf
Snow Live	(150psf)	$(12.5 f t)$	$=$	1875plf

Upper Floor			
Floor Dead	$(12 p s f)$	(.Oft $)$	$=$
Floor Live	$(40 p s f)$	$(.0 f t)$	$=$

Deck Floor			
Floor Dead	(12psf)	(.Oft $)$	$=$
Snow Live	(150psf)	(.Oft $)$	$=$

Misc				
Wall Load:	(18psf)	$(16.0 f t)$	$=$	296plf
Conc Stem:	$(145 p c f)$	$(4 x .5 f t)$	$=$	254plf
Misc Load:	$(.0 f t)$	$(.0 f t)$	$(.0 f t)$	$=$

2637plf

Use Footing Width:	24	x	8	in
$\mathrm{W} /$		(2)	$\# 4$	Cont.

Individual Footing Design

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof			
Roof Dead	(17psf)	(4.0ft)	$=$
Snow Live	(150psf)	(4.0ft)	$=$

Upper Floor			
Floor Dead	(12psf)	(1.0ft	$=$
Floor Live	(40psf)	(1.0ft)	$=$

Deck Floor			
Floor Dead	(12psf)	(.Oft $)$	$=$
Snow Live	(150psf)	(.Oft $)$	$=$

Misc				
Wall Load:	(18psf)	$(27.0 f t)$	$=$	499plf
Conc Stem:	$(145 p c f)$	$(2 \times .5 f t)$	$=$	145plf
Misc Load:	(.0ft)	(.0ft $) \quad$ (.0ft $)$	$=$	plf

1324plf

Use Footing Width:	12	x	8	in
$\mathrm{W} /$		(2)	$\# 4$	Cont.

Individual Footing Design

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof				
Roof Dead	(17psf)	(14.5ft)	$=$	247plf
Snow Live	(150psf)	(14.5ft)	$=$	2175plf

Upper Floor			
Floor Dead	$(12 p s f)$	(.Oft $)$	$=$
Floor Live	$(40 p s f)$	$(.0 f t)$	$=$

Deck Floor			
Floor Dead	(12psf)	(.Oft $)$	$=$
Snow Live	(150psf)	(.Oft $)$	$=$

Misc				
Wall Load:	(18psf)	$(16.0 f t)$	$=$	296plf
Conc Stem:	$(145 p c f)$	$(2 x .5 f t)$	$=$	145plf
Misc Load:	(.0ft)	(.0ft $) \quad$ (.0ft)	$=$	plf

2862plf

Use Footing Width:	30	\mathbf{x}	10	in
$\mathrm{W} /$		(3)	$\# 4$	Cont.

Individual Footing Design

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof				
Roof Dead	(17psf)	(24.3ft)	$=$	412plf
Snow Live	(150psf)	$(24.3 f t)$	$=$	3638plf

Upper Floor			
Floor Dead	(12psf)	(10.0ft)	$=$
Floor Live	(40psf)	(10.0ft)	$=$

Deck Floor			
Floor Dead	(12psf)	(.Oft $)$	$=$
Snow Live	(150psf)	(.Oft $)$	$=$

Misc				
Wall Load:	$(18 p s f)$	$(27.0 f t)$	$=$	499plf
Conc Stem:	$(145 p c f)$	$(x .5 f t)$	$=$	plf
Misc Load:	$(.0 f t)$	$(.0 f t)$	$(.0 f t)$	$=$

4669plf

Use Footing Width:	42	\mathbf{x}	10	in
$\mathrm{W} /$		(4)	$\# 4$	Cont.

PAD FOOTING DESIGN CAPACITIES:

Soil Bearing (1500 psf)							
Dimensions (Inches)					Capacity	\# of Bars	Min. Col. Size
72	x	72	x	12	47,500 lbs	10	3.5 sq.
66	x	66	x	12	39,750 lbs	8	3.5 sq .
60	x	60	X	10	33,450 lbs	6	3.5 sq.
54	x	54	X	10	27,000 lbs	5	3.5 sq .
48	x	48	x	8	21,500 lbs	4	3.5 sq.
42	x	42	X	8	16,500 lbs	4	3.5 sq .
36	x	36	x	8	12,000 lbs	4	3.5 sq.
30	x	30	x	8	8,350 lbs	3	3.5 sq.
24	x	24	x	8	5,300 lbs	2	3.5 sq.
18	x	18	x	8	2,900 lbs	2	3.5 sq.

Bars to be $31 / 2^{\prime \prime}$ from bottom of pad. Evenly space in both directions.

CONT. FOOTING DESIGN CAPACITIES:

Soil Bearing (1500 psf)				
Dimensions (Inches)			Capacity	\# of Bars
60	x	10	$6,850 \mathrm{plf}$	6
54	x	10	$6,200 \mathrm{plf}$	5
48	x	10	$5,500 \mathrm{plf}$	4
42	x	10	$4,750 \mathrm{plf}$	4
36	x	10	$4,000 \mathrm{plf}$	3
30	x	10	$3,400 \mathrm{plf}$	3
24	x	8	$2,800 \mathrm{plf}$	2
18	x	8	$2,100 \mathrm{plf}$	2
16	x	8	$1,850 \mathrm{plf}$	2
12	x	8	$1,350 \mathrm{plf}$	2

Bars to be 3 1/2" from bottom of footing.

Project Title:
Engineer:
Project ID:
Project Descr:

General Footing

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.05.25
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: --None--

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Material Properties		Soil Design Values	
f'c : Concrete 28 day strength	2.50 ksi	Allowable Soil Bearing	1.50 ksf
fy : Rebar Yield	60.0 ksi	Soil Density	110.0 pcf
Ec: Concrete Elastic Modulus	3,122.0 ksi	Increase Bearing By Footing Weight	No
Concrete Density	145.0 pcf	Soil Passive Resistance (for Sliding)	250.0 pcf
φ Values Flexure	0.90	Soil/Concrete Friction Coeff.	0.30
Shear	0.750	Increases based on footing Depth	
Analysis Settings		Footing base depth below soil surface	ft
Min Steel \% Bending Reinf.	$=$	Allow press. increase per foot of depth	ksf
Min Allow \% Temp Reinf.	0.00180	when footing base is below	ft
Min. Overturning Safety Factor	1.0:1		
Min. Sliding Safety Factor	1.0:1	Increases based on footing plan dimension	
Add Ftg Wt for Soil Pressure	Yes	Allowable pressure increase per foot of depth	
Use ftg wt for stability, moments \& shears	Yes	is greater than	ksf
Add Pedestal Wt for Soil Pressure	No	widh is greater than	ft
Use Pedestal wt for stability, mom \& shear	No		

Dimensions

Applied Loads

		D	Lr	L	S	W	E	H
P : Column Load	$=$	14.020		7.0	65.630			
OB : Overburden	=							ksf
M-xx	=							k-ft
M-ZZ	=							$\mathrm{k}-\mathrm{ft}$
V-x	$=$							k
V-z	$=$							k

Project Title:
Engineer:
Project ID:
Project Descr:

General Footing	Project File: 05 Beams.ec6	
LIC\# : KW-06013353, Build:20.23.05.25	SNAKE RIVER ENGINEERING	(c) ENERCALC INC 1983-2023

DESCRIPTION: --None--

DESIGN SUMMARY
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESIGN SUMMARY					Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.9747	Soil Bearing	1.462 ksf	1.50 ksf	+D+S about Z-Z axis
PASS	n/a	Overturning - $\mathrm{X}-\mathrm{X}$	0.0 k-ft	$0.0 \mathrm{k}-\mathrm{ft}$	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding-X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding-Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.5990	Z Flexure (+X)	15.667 k-ft/ft	26.153 k -ft/ft	+1.20D+0.50L+1.60S
PASS	0.5990	Z Flexure (-X)	15.667 k-ft/ft	26.153 k -ft/ft	+1.20D+0.50L+1.60S
PASS	0.5990	X Flexure (+Z)	15.667 k-ft/ft	26.153 k -ft/ft	+1.20D+0.50L+1.60S
PASS	0.5990	X Flexure (-Z)	15.667 k-ft/ft	26.153 k -ft/ft	+1.20D+0.50L+1.60S
PASS	0.3946	1-way Shear (+X)	29.592 psi	75.0 psi	+1.20D+0.50L+1.60S
PASS	0.3946	1-way Shear (-X)	29.592 psi	75.0 psi	+1.20D+0.50L+1.60S
PASS	0.3946	1-way Shear (+Z)	29.592 psi	75.0 psi	+1.20D+0.50L+1.60S
PASS	0.3946	1-way Shear (-Z)	29.592 psi	75.0 psi	+1.20D+0.50L+1.60S
PASS	0.9046	2-way Punching	135.693 psi	150.0 psi	+1.20D+0.50L+1.60S

Detailed Results

Soil Bearing

Rotation Axis \& Load Combination...	Gross Allowable	Xecc	${ }_{\text {(in) }}^{\text {Zecc }}$	Actual Soil Bearing Stress @ Location				Actual / Allow Ratio
				Bottom, -Z	Top, +Z	Left, -X	Right, +X	
X-X, D Only	1.50	n/a	0.0	0.4366	0.4366	n/a	n / a	0.291
X-X, +D+L	1.50	n/a	0.0	0.5459	0.5459	n/a	n/a	0.364
X-X, +D+S	1.50	n/a	0.0	1.462	1.462	n/a	n/a	0.975
X-X, +D+0.750L	1.50	n/a	0.0	0.5186	0.5186	n/a	n/a	0.346
X-X, +D+0.750L+0.750S	1.50	n/a	0.0	1.288	1.288	n/a	n/a	0.859
X-X, +0.60D	1.50	n/a	0.0	0.2619	0.2619	n/a	n/a	0.175
Z-Z, D Only	1.50	0.0	n/a	n/a	n/a	0.4366	0.4366	0.291
Z-Z, +D+L	1.50	0.0	n/a	n/a	n/a	0.5459	0.5459	0.364
Z-Z, +D+S	1.50	0.0	n / a	n/a	n/a	1.462	1.462	0.975
Z-Z, +D+0.750L	1.50	0.0	n / a	n/a	n/a	0.5186	0.5186	0.346
Z-Z, +D+0.750L+0.750S	1.50	0.0	n/a	n/a	n/a	1.288	1.288	0.859
Z-Z, +0.60D	1.50	0.0	n/a	n/a	n/a	0.2619	0.2619	0.175

Overturning Stability

 Load Combination...	Overturning Moment	Resisting Moment

Footing Has NO Overturning
Sliding Stability
All units k

Force Application Axis Load Combination...	Sliding Force	Resisting Force

Footing Has NO Sliding
Footing Flexure

Flexure Axis \& Load Combination	$\begin{aligned} & \mathrm{Mu} \\ & \mathrm{k}-\mathrm{ft} \end{aligned}$	Side	Tension Surface	As Req'd $\mathrm{in}^{\wedge} 2$	$\begin{aligned} & \text { Gvrn. As } \\ & \text { in^2 } \end{aligned}$	Actual As in^2	$\begin{gathered} \text { Phi*Mn } \\ \text { k-ft } \end{gathered}$	Status
X-X, +1.40D	2.454	+Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.40D	2.454	-Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+1.60L	3.503	+Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+1.60L	3.503	-Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+1.60L+0.50S	7.605	+Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+1.60L+0.50S	7.605	-Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+0.50L	2.541	+Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+0.50L	2.541	-Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D	2.103	+Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D	2.103	-Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+0.50L+1.60S	15.667	+Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+0.50L+1.60S	15.667	-Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+1.60S	15.229	+Z	Bottom	0.3888	AsMin	0.40	26.153	OK
09/18/23							Page 56 of 75	

Project Title:
Engineer:
Project ID:
Project Descr:

General Footing	Project File: 05 Beams.ec6
LIC\#: KW-06013353, Build:20.23.05.25	SNAKE RIVER ENGINEERING

DESCRIPTION: --None--

Footing Flexure

Flexure Axis \& Load Combination	$\begin{aligned} & \mathrm{Mu} \\ & \mathrm{k}-\mathrm{ft} \end{aligned}$	Side	Tension Surface	$\begin{aligned} & \text { As Req'd } \\ & \text { in^2 } \end{aligned}$	$\begin{aligned} & \text { Gvrn. As } \\ & \text { in^2 }^{\text {Gen }} \end{aligned}$	$\begin{aligned} & \text { Actual As } \\ & \text { in }^{\wedge} 2 \end{aligned}$	$\begin{gathered} \text { Phi*Mn } \\ \text { k-ft } \end{gathered}$	Status
X-X, +1.20D+1.60S	15.229	-Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+0.50L+0.50S	6.642	+Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+0.50L+0.50S	6.642	-Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+0.50L+0.70S	8.283	+Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +1.20D+0.50L+0.70S	8.283	-Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +0.90D	1.577	+Z	Bottom	0.3888	AsMin	0.40	26.153	OK
X-X, +0.90D	1.577	-Z	Bottom	0.3888	AsMin	0.40	26.153	OK
Z-Z, +1.40D	2.454	-X	Bottom	0.3888	AsMin	0.40	26.153	OK
Z-Z, +1.40D	2.454	+X	Bottom	0.3888	AsMin	0.40	26.153	OK
Z-Z, +1.20D+1.60L	3.503	-X	Bottom	0.3888	AsMin	0.40	26.153	OK
Z-Z, +1.20D+1.60L	3.503	+X	Bottom	0.3888	AsMin	0.40	26.153	OK
Z-Z, +1.20D+1.60L+0.50S	7.605	-X	Bottom	0.3888	AsMin	0.40	26.153	OK
Z-Z, +1.20D+1.60L+0.50S	7.605	+X	Bottom	0.3888	AsMin	0.40	26.153	OK
Z-Z, +1.20D+0.50L	2.541	-X	Bottom	0.3888	AsMin	0.40	26.153	OK
Z-Z, +1.20D+0.50L	2.541	+X	Bottom	0.3888	AsMin	0.40	26.153	OK
Z-Z, +1.20D	2.103	-X	Bottom	0.3888	AsMin	0.40	26.153	OK
Z-Z, +1.20D	2.103	+X	Bottom	0.3888	AsMin	0.40	26.153	OK
Z-Z, +1.20D+0.50L+1.60S	15.667	-X	Bottom	0.3888	AsMin	0.40	26.153	OK
Z-Z, +1.20D+0.50L+1.60S	15.667	+X	Bottom	0.3888	AsMin	0.40	26.153	OK
Z-Z, +1.20D+1.60S	15.229	-X	Bottom	0.3888	AsMin	0.40	26.153	OK
Z-Z, +1.20D+1.60S	15.229	+X	Bottom	0.3888	AsMin	0.40	26.153	OK
Z-Z, +1.20D+0.50L+0.50S	6.642	-X	Bottom	0.3888	AsMin	0.40	26.153	OK
Z-Z, +1.20D+0.50L+0.50S	6.642	+X	Bottom	0.3888	AsMin	0.40	26.153	OK
Z-Z, +1.20D+0.50L+0.70S	8.283	-X	Bottom	0.3888	AsMin	0.40	26.153	OK
Z-Z, +1.20D+0.50L+0.70S	8.283	+X	Bottom	0.3888	AsMin	0.40	26.153	OK
Z-Z, +0.90D	1.577	-X	Bottom	0.3888	AsMin	0.40	26.153	OK
Z-Z, +0.90D	1.577	+X	Bottom	0.3888	AsMin	0.40	26.153	OK
One Way Shear								

Load Combination...	Vu @ -X	Vu @ +X	Vu @ -Z	Vu @ +Z	Vu:Max	Phi Vn V	Vu/Phi*Vn	Status
+1.40D	4.63 psi	4.63 psi	4.63 psi	i $\quad 4.63 \mathrm{psi}$	4.63 psi	75.00 psi	-0.06	OK
+1.20D+1.60L	6.62 psi	6.62 psi	6.62 psi	i $\quad 6.62$ psi	6.62 psi	75.00 psi	0.09	OK
+1.20D+1.60L+0.50S	14.37 psi	75.00 psi	si 0.19	OK				
+1.20D+0.50L	4.80 psi	75.00 psi	0.06	OK				
+1.20D	3.97 psi	75.00 psi	0.05	OK				
+1.20D+0.50L+1.60S	29.59 psi	75.00 psi	- 0.39	OK				
+1.20D+1.60S	28.77 psi	75.00 psi	- 0.38	OK				
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}$	12.55 psi	75.00 psi	- 0.17	OK				
+1.20D+0.50L+0.70S	15.65 psi	75.00 psi	- 0.21	OK				
+0.90D	2.98 psi	75.00 psi	si 0.04	OK				
Two-Way "Punching" Shear						All units k		

Load Combination...	Vu	Phi*Vn	Vu $/$ Phi*Vn	Status
+1.40 D	21.25 psi	150.00 psi	0.1417	OK
$+1.20 \mathrm{D}+1.60 \mathrm{~L}$	30.34 psi	150.00 psi	0.2023	OK
$+1.20 \mathrm{D}+1.60 \mathrm{~L}+0.50 \mathrm{~S}$	65.87 psi	150.00 psi	0.4391	OK
$+1.20 \mathrm{D}+0.50 \mathrm{~L}$	22.00 psi	150.00 psi	0.1467	OK
+1.20 D	18.22 psi	150.00 psi	0.1214	OK
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+1.60 \mathrm{~S}$	135.69 psi	150.00 psi	0.9046	OK
$+1.20 \mathrm{D}+1.60 \mathrm{~S}$	131.90 psi	150.00 psi	OK	
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}$	57.53 psi	150.00 psi	OK	
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.70 \mathrm{~S}$	71.74 psi	150.00 psi	0.3835	OK
+0.90 D	13.66 psi	150.00 psi	0.4783	OK

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

LIC\# : KW-06013353, Build:20.23.05.25
SNAKE RIVER ENGINEERING
DESCRIPTION: FA ADU
Code Reference:
Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

Criteria		
Retained Height	$=12.33 \mathrm{ft}$	
Wall height above soil	$=$	0.67 ft
Slope Behind Wall	$=$	0.00
Height of Soil over Toe	$=0.00 \mathrm{in}$	
Water table above bottom of footing $=$ 0.0 ft		

\section*{Surcharge Loads
 | Surcharge Over Heel | $=0.0 \mathrm{psf}$ |
| :--- | :--- |
| Used To Resist Sliding | $=0$ |
| Surcharge Over Toe | $=$ |
| Used for Sliding \& Overturning | |}

Axial Load Applied to Stem		
Axial Dead Load	$=$	686.0 lbs
Axial Live Load	$=$	$3,700.0 \mathrm{lbs}$
Axial Load Eccentricity	$=$	0.0 in

Soil Data		
Allow Soil Bearing	1,500.0 psf	
Equivalent Fluid Pressure Method		
Active Heel Pressure	$=35.0 \mathrm{psf} / \mathrm{ft}$	
	$=$	
Passive Pressure	$=250.0 \mathrm{psf} / \mathrm{ft}$	
Soil Density, Heel	$=110.00 \mathrm{pcf}$	
Soil Density, Toe	$=110.00 \mathrm{pcf}$	
Footing\|	Soil Friction	$=0.400$
Soil height to ignore for passive pressure	$=12.00 \mathrm{in}$	

Lateral Load Applied to Stem

Lateral Load	$=$	$0.0 \mathrm{\#} / \mathrm{ft}$
\ldots Height to Top	$=$	0.00 ft
\ldots Height to Bottom	$=$	0.00 ft
Load Type	$=$	Wind (W)
		$($ Strength Level)

Adjacent Footing Load		
Adjacent Footing Load	$=$	0.0 lbs
Footing Width	$=$	0.00 ft
Eccentricity	$=$	0.00 in
Wall to Ftg CL Dist	$=$	0.00 ft
Footing Type		Spread Footing
Base Above/Below Soil	$=$	0.0 ft
$\begin{array}{lll}\text { at Back of Wall } & = & 0.300\end{array}$ Poisson's Ratio		

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.05.25
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: FA ADU

Design Summary			Stem Construction	Bottom					
Wall Stability Ratios		1.58 OK	Design Height Above Ftg		$\begin{array}{r} \hline \text { Stem OK } \\ 0.00 \end{array}$				
			Wall Material Above "Ht"		Concrete				
			Design Method	=	SD	SD	SD	SD	SD
Slab Resists All Sliding!			Thickness	=	10.00				
Global Stability	=	0.96	Rebar Size	$=$	\# 5				
			Rebar Spacing	=	6.00				
Total Bearing Load ...resultant ecc. Eccentricity wit	=	8,268 lbs	Rebar Placed at	=	Edge				
	=	1.26 in	Design Data						
	in mi	dle third	$\mathrm{fb} / \mathrm{FB}+\mathrm{fa} / \mathrm{Fa}$	=	0.841				
Soil Pressure @ Toe	=	1,151 psf OK	Total Force @ Section						
	-	1,397 psf OK	Service Level	$\mathrm{lbs}=$					
Allowable		1,500 psf	Strength Level	$\mathrm{lbs}=$	4,256.8				
ACI Factored @ Toe		Allowable	Moment....Actual						
	-	1,611 psf	Service Level	ft-\# =					
		1,956 psf	Strength Level	ft -\#	17,495.5				
Footing Shear @ Toe Footing Shear @ Heel Allowable	=	47.3 psi OK	Moment. Allowable		20,802.0				
	=	0.6 psi OK							
	$=$	75.0 psi	Shear.....Actual Service Level	psi $=$					
Sliding Calcs			Strength Level	psi $=$	43.3				
Lateral Sliding Force	=	3,187.8 lbs	Shear.....Allowable	psi $=$	75.0				
			Anet (Masonry)	in2 $=$					
			Wall Weight	psf $=$	125.0				
			Rebar Depth 'd'	in $=$	8.19				
Vertical component of active lateral soil pressure IS			Masonry Data						
			f'm	psi $=$					
NOT considered in the calculation of soil bearing			Fs	psi $=$					
			Solid Grouting	$=$					
Load Factors			Modular Ratio ' n '	=					
Building Code			Equiv. Solid Thick.	=					
Dead Load		1.200	Masonry Block Type	$=$					
Live Load		1.600	Masonry Design Method		ASD				
Earth, H		1.600	Concrete Data						
Wind, WSeismic, E		1.600	f'c	psi $=$	2,500.0				
		1.000	Fy	psi $=$	60,000.0				

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

Project File: 05 Beams.ec6

LIC\# : KW-06013353, Build:20.23.05.25
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: FA ADU

Concrete Stem Rebar Area Details

If torsion exceeds allowable, provide
supplemental design for footing torsion.
Other Acceptable Sizes \& Spacings
Toe: \#4@ 5.71 in, \#5@ 8.85 in, \#6@ 12.57 in, \#7@ 17.14 in, \#8@ 22.57 in, \#9@ $28.57 \mathrm{in}, \# 10 @ 36.28$ in
Heel: \#4@ 7.93 in, \#5@ 12.30 in, \#6@ 17.46 in, \#7@ 23.80 in, \#8@ 31.34 in, \#9@ 39.68 in, \#10@ 50.39 in

Key: No key defined

Min footing T\&S reinf Area Min footing T\&S reinf Area per foot	$1.96 \quad$ in2 $0.30 \quad$ in2 ft
If one layer of horizontal bars:	If two layers of horizontal bars:
\#4@ 7.94 in	\#4@ 15.87 in
\#5@ 12.30 in	\#5@ 24.60 in
\#6@ 17.46 in	\#6@ 34.92 in

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.05.25
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: FA ADU
Summary of Overturning \& Resisting Forces \& Moments

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus	250.0	pci
Horizontal Defl @ Top of Wall (approximate only)	0.000 in	

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall	
LIC\#: KW-06013353, Build:20.23.05.25	Project File: 05 Beams.ec6
DESCRIPTION: FA ADU	(c) ENERCALC INC 1983-2023

Rebar Lap \& Embedment Lengths Information

Stem Design Segment: Bottom
Stem Design Height: $\quad 0.00 \mathrm{ft}$ above top of footing

Lap Splice length for \#5 bar specified in this stem design segment $(25.4 .2 .3 \mathrm{a})=$	23.40 in
Development length for \#5 bar specified in this stem design segment =	18.00 in
Hooked embedment length into footing for \#5 bar specified in this stem design segment $=$	10.50 in
As Provided $=$	$0.6200 \mathrm{in} 2 / \mathrm{ft}$
As Required $=$	$0.4941 \mathrm{in} 2 / \mathrm{ft}$

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

LIC\# : KW-06013353, Build:20.23.05.25
SNAKE RIVER ENGINEERING
DESCRIPTION: FB ADU

Code Reference:

Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

Criteria		
Retained Height	$=12.33 \mathrm{ft}$	
Wall height above soil	$=$	0.67 ft
Slope Behind Wall	$=$	0.00
Height of Soil over Toe	$=0.00 \mathrm{in}$	
Water table above bottom of footing $=$ 0.0 ft		

Surcharge Loads
 Surcharge Over Heel = 0.0 psf Surcharge Over Heel $\quad=\quad 0.0 \mathrm{psf}$ Used To Resist Sliding \& Overturning Surcharge Over Toe $=0.0$ Used for Sliding \& Overturning

Axial Load Applied to Stem

Axial Dead Load	$=376.0 \mathrm{lbs}$	
Axial Live Load	$=$	640.0 lbs
Axial Load Eccentricity	$=$	0.0 in

Allow Soil Bearing $\quad=1,500.0 \mathrm{psf}$ Equivalent Fluid Pressure Method			
Active Heel Pressure	=	35.0 psf/ft	
	=		
Passive Pressure	=	250.0 psf/ft	
Soil Density, Heel	=	110.00 pcf	
Soil Density, Toe	=	110.00 pcf	
Footing\|	Soil Friction	=	0.400
Soil height to ignore for passive pressure		12.00 in	

Lateral Load Applied to Stem

Lateral Load	$=$	$0.0 \mathrm{\#} / \mathrm{ft}$
\ldots. Height to Top	$=$	0.00 ft
\ldots Height to Bottom	$=$	0.00 ft
Load Type	$=$	Wind (W)
		$($ Strength Level $)$
Wind on Exposed Stem	$=$	0.0 psf
(Strength Level)		

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.05.25
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: FB ADU

Design Summary			Stem Construction	Bottom					
Wall Stability RatiosOverturning			Design Height Above Ftg		$\begin{array}{r} \hline \text { Stem OK } \\ 0.00 \end{array}$				
		1.51 OK	Wall Material Above "Ht"	=	Concrete				
			Design Method	=	SD	SD	SD	SD	SD
Slab Resists All Sliding!			Thickness	$=$	10.00				
Global Stability	=	0.96	Rebar Size	=	\# 5				
			Rebar Spacing	=	6.00				
Total Bearing Load ...resultant ecc. Eccentricity out	=	4,928 lbs	Rebar Placed at	=	Edge				
	=	13.54 in	Design Data						
	de m	dle third	$\mathrm{fb} / \mathrm{FB}+\mathrm{fa} / \mathrm{Fa}$	$=$	0.841				
Soil Pressure @ Toe	$=$	1,492 psf OK	Total Force @ Section						
	-	0 psf OK	Service Level	$\mathrm{lbs}=$					
AllowableSoil Pressure Les	=	1,500 psf	Strength Level	lbs =	4,256.8				
		Allowable	Moment....Actual						
ACI Factored @ Toe ACI Factored @ Heel	=	2,089 psf	Service Level	$\mathrm{ft}-\mathrm{=}$					
	=	0 psf	Strength Level	ft -\# =	17,495.5				
Footing Shear @ Toe Footing Shear @ Heel Allowable	=	40.2 psi OK	Moment. Allowable		20,802.0				
	$=$	10.3 psi OK	Shear Actual		20,802.0				
	$=$	75.0 psi	Shear.....Actual Service Level	psi $=$					
Sliding Calcs			Strength Level	psi $=$	43.3				
Lateral Sliding Force	=	3,187.8 lbs	Shear.....Allowable	psi $=$	75.0				
			Anet (Masonry)	in2 $=$					
			Wall Weight	psf $=$	125.0				
			Rebar Depth 'd'	in =	8.19				
Vertical component of active lateral soil pressure IS			Masonry Data						
			f'm	psi $=$					
NOT considered in the calculation of soil bearing			Fs	psi $=$					
			Solid Grouting	$=$					
Load Factors			Modular Ratio ' n '	=					
Building Code			Equiv. Solid Thick.	=					
Dead Load		1.200	Masonry Block Type	=					
Live Load		1.600	Masonry Design Method		ASD				
Earth, H		1.600	Concrete Data						
Wind, W		1.600	f'c	psi $=$	2,500.0				
Seismic, E		1.000	Fy	psi $=$	60,000.0				

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

Project File: 05 Beams.ec6

LIC\# : KW-06013353, Build:20.23.05.25
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: FB ADU

Concrete Stem Rebar Area Details

If torsion exceeds allowable, provide
supplemental design for footing torsion.
Other Acceptable Sizes \& Spacings
Toe: \#4@ 5.71 in, \#5@ 8.85 in, \#6@ 12.57 in, \#7@ 17.14 in, \#8@ 22.57 in, \#9@ $28.57 \mathrm{in}, \# 10 @ 36.28$ in
Heel: \#4@ 7.93 in, \#5@ 12.30 in, \#6@ 17.46 in, \#7@ 23.80 in, \#8@ 31.34 in, \#9@ 39.68 in, \#10@ 50.39 in

Key: No key defined

Min footing T\&S reinf Area Min footing T\&S reinf Area per foot	$2.01 \quad$ in2 $0.30 \quad$ in2 ft
If one layer of horizontal bars:	If two layers of horizontal bars:
\#4@ 7.94 in	\#4@ 15.87 in
\#5@ 12.30 in	\#5@ 24.60 in
\#6@ 17.46 in	\#6@ 34.92 in

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.05.25
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: FB ADU
Summary of Overturning \& Resisting Forces \& Moments

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus	250.0 pci
Horizontal Defl @ Top of Wall (approximate only)	0.081 in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall	Project File: 05 Beams.ec6	
LIC\#: KW-06013353, Build:20.23.05.25	SNAKE RIVER ENGINEERING	(c) ENERCALC INC 1983-2023
DESCRIPTION: FB ADU		

Rebar Lap \& Embedment Lengths Information

Stem Design Segment: Bottom
Stem Design Height: $\quad 0.00 \mathrm{ft}$ above top of footing

Lap Splice length for \#5 bar specified in this stem design segment $(25.4 .2 .3 \mathrm{a})=$	23.40 in
Development length for \#5 bar specified in this stem design segment =	18.00 in
Hooked embedment length into footing for \#5 bar specified in this stem design segment =	10.50 in
As Provided $=$	$0.6200 \mathrm{in} 2 / \mathrm{ft}$
As Required $=$	$0.4941 \mathrm{in} 2 / \mathrm{ft}$

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

DESCRIPTION: FB ADU

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

DESCRIPTION: FC ADU

Code Reference:

Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

Criteria		
Retained Height	$=$	9.33 ft
Wall height above soil	$=$	0.67 ft
Slope Behind Wall	$=$	0.00
Height of Soil over Toe	$=0.00 \mathrm{in}$	
Water table above bottom of footing$=0.0 \mathrm{ft}$		

\section*{Surcharge Loads
 Surcharge Over Heel $=$| 0.0 psf |
| :---: |
| Used To Resist Sliding $\&$ |
| Surcharge Over Toe |
| O |
| Used for Sliding \& Overturning |$\quad 0.0$}

Axial Load Applied to Stem

Axial Dead Load	$=$	376.0 lbs
Axial Live Load	$=$	640.0 lbs
Axial Load Eccentricity	$=$	0.0 in

$\begin{array}{lll}\text { Axial Load Eccentricity } & = & 0.0 \text { in }\end{array}$

Allow Soil Bearing $=1,500$ Equivalent Fluid Pressure Method			
Active Heel Pressure	=	35.0 psf/ft	
	=		
Passive Pressure	=	250.0 psf/ft	
Soil Density, Heel	=	110.00 pcf	
Soil Density, Toe	=	110.00 pcf	
Footing\|	Soil Friction	=	0.400
Soil height to ignore for passive pressure		12.00 in	

Lateral Load Applied to Stem

Lateral Load	$=$	$0.0 \mathrm{\#} / \mathrm{ft}$
\ldots. Height to Top	$=$	0.00 ft
\ldots Height to Bottom	$=$	0.00 ft
Load Type	$=$	Wind (W)
		(Strength Level)
Wind on Exposed Stem	$=$	0.0 psf
(Strength Level)		

Adjacent Footing Load		
Adjacent Footing Load	$=$	0.0 lbs
Footing Width	$=$	0.00 ft
Eccentricity	$=$	0.00 in
Wall to Ftg CL Dist	$=$	0.00 ft
Footing Type		Spread Footing
Base Above/Below Soil	$=$	0.0 ft
$\begin{array}{lll}\text { at Back of Wall } & = & 0.300\end{array}$		
$\begin{array}{lll}\text { Poisson's Ratio } & & \end{array}$.		

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.05.25
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: FC ADU

Design Summary			
Wall Stability Ratios			
Slab Resists All Sliding !			
Global Stability $\quad=\quad 1.24$			
Total Bearing Load ...resultant ecc.	=		
	=	7.23	

Stem Construction		Bottom				
Design Height Above Fte	$\mathrm{ft}=$	$\begin{array}{r} \hline \text { Stem OK } \\ 0.00 \end{array}$				
Wall Material Above "Ht"	$=$	Concrete				
Design Method	=	SD	SD	SD	SD	SD
Thickness	=	8.00				
Rebar Size	=	\# 5				
Rebar Spacing	=	12.00				
Rebar Placed at	=	Edge				
Design Data fb/FB + fa/Fa	$=$	0.933				
Total Force @ Section						
Service Level	\|bs =					
Strength Level	$\mathrm{lbs}=$	2,437.4				
Moment....Actual						
Service Level	ft-\# =					
Strength Level	ft-\# =	7,580.2				
Moment.....Allowable	=	8,121.3				
Shear.....Actual						
Service Level	psi $=$					
Strength Level	psi $=$	32.8				
Shear.....Allowable	psi $=$	75.0				
Anet (Masonry)	in2 $=$					
Wall Weight	$\mathrm{psf}=$	100.0				
Rebar Depth 'd'	in $=$	6.19				
Masonry Data						
f'm	psi $=$					
Fs	psi $=$					
Solid Grouting						
Modular Ratio ' n '	$=$					
Equiv. Solid Thick.	=					
Masonry Block Type	=					
Masonry Design Method	=	ASD				
Concrete Data f'c	psi $=$	2,500.0				
Fy	psi $=$	60,000.0				

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall		Project File: 05 Beams.ec6
LIC\#: KW-06013353, Build:20.23.05.25	SNAKE RIVER ENGINEERING	(c) ENERCALC INC 1983-2023

DESCRIPTION: FC ADU

Concrete Stem Rebar Area Details

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.05.25
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: FC ADU
Summary of Overturning \& Resisting Forces \& Moments

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus	250.0	pci
Horizontal Defl @ Top of Wall (approximate only)	0.075 in	

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall	
LIC\#: KW-06013353, Build:20.23.05.25	Project File: 05 Beams.ec6
DESCRIPTION: FC ADU	(c) ENERCALC INC 1983-2023

Rebar Lap \& Embedment Lengths Information

Stem Design Segment: Bottom
Stem Design Height: $\quad 0.00 \mathrm{ft}$ above top of footing

Lap Splice length for \#5 bar specified in this stem design segment (25.4.2.3a) =	23.40 in
Development length for \#5 bar specified in this stem design segment =	18.00 in
Hooked embedment length into footing for \#5 bar specified in this stem design segment =	10.50 in
As Provided =	$0.3100 \mathrm{in} 2 / \mathrm{ft}$
As Required =	$0.2870 \mathrm{in} 2 / \mathrm{ft}$

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.05.25 SNAKE RIVER ENGINEERING (c) ENERCALC INC 1983-2023

DESCRIPTION: FC ADU

