Structural Calculations

Project Title: Chambers Residence

Location: McCall (150), Idaho

Job \#: 2023-6431

Prepared in accordance with 2018 IBC. Calculations expire by: 01/23/2025

Net Pressures (psf), Basic Load Cases

Surface	Roof angle $q=18.43$			Roof angle $q=18.43$		
	$\mathrm{GC}_{\mathrm{pf}}$	Net Press. $\mathrm{W} /$		$\mathrm{GC}_{\mathrm{pf}}$	Net Press. $\mathrm{W} /$	
		$\left(+\mathrm{GC}_{\mathrm{pi}}\right)$	$\left(-\mathrm{GC}_{\mathrm{pi}}\right)$		$\left(+\mathrm{GC}_{\mathrm{pi}}\right)$	$\left(-\mathrm{GC}_{\mathrm{pi}}\right)$
1	0.52	9.34	19.33	-0.45	-17.49	-7.50
2	-0.69	-24.15	-14.16	-0.69	-24.15	-14.16
3	-0.47	-18.00	-8.01	-0.37	-15.27	-5.27
4	-0.42	-16.53	-6.54	-0.45	-17.49	-7.50
5				0.40	6.11	16.10
6				-0.29	-13.05	-3.05
1 E	0.78	16.66	26.66	-0.48	-18.32	-8.33
2 E	-1.07	-34.70	-24.71	-1.07	-34.70	-24.71
3 E	-0.67	-23.69	-13.70	-0.53	-19.71	-9.72
4 E	-0.62	-22.16	-12.16	-0.48	-18.32	-8.33
5 E				0.61	11.94	21.93
6 E				-0.43	-16.93	-6.94

\qquad

Net Pressures (psf), Torsional Load Cases

Surface	Roof angle $q=18.43$		
	$\mathrm{GC}_{\mathrm{pf}}$	Net Press. $\mathrm{W} /$	
		$\left(+\mathrm{GC}_{\mathrm{pi}}\right)$	$\left(-\mathrm{GC}_{\mathrm{pi}}\right)$
1 T	0.52	2.34	4.83
2 T	-0.69	-6.04	-3.54
3 T	-0.47	-4.50	-2.00
4 T	0.00	-4.13	-1.63
	Roof angle $\mathrm{q}=$		
Surface	0.00		
	$\mathrm{GC}_{\mathrm{pf}}$	Net Press. W/	
		$\left(+\mathrm{GC}_{\mathrm{pi}}\right)$	$\left(-\mathrm{GC}_{\mathrm{pi} \mathrm{i}}\right)$
5 T	0.40	1.53	4.03
6 T	-0.29	-3.26	-0.76

Net Pressur (ps), Torsional Load

Design pressures for MWFRS

$p=q_{h}\left[\left(G_{p f}\right)-\left(G_{p i}\right)\right]$

$=\mathbf{0 . 1 8} \quad$ or $\quad \mathbf{- 0 . 1 8}$
$\mathrm{a}=$ width of edge strips, Fig 28.3-1, page 312, $\operatorname{MAX}[\mathrm{MIN}(0.1 \mathrm{~B}, 0.1 \mathrm{~L}, 0.4 \mathrm{~h}), \mathrm{MIN}(0.04 \mathrm{~B}, 0.04 \mathrm{~L}), 3]=$
Velocity pressure
$\mathbf{q}_{\mathrm{h}}=\mathbf{0 . 0 0 2 5 6} \mathrm{K}_{\mathrm{z}} \mathrm{K}_{\mathrm{zt}} \mathrm{K}_{\mathrm{d}} \mathrm{K}_{\mathrm{e}} \mathbf{V}^{2} \quad=27.76 \mathrm{psf}$
where: $\quad q_{h}=$ velocity pressure at mean roof height, h. (Eq. 26.10-1 page 268)
$\mathrm{K}_{\mathrm{z}}=$ velocity pressure exposure coefficient evaluated at height, h, (Tab. 26.10-1, pg : $=\mathbf{0} .96$
$K_{d}=$ wind directionality factor. (Tab. 26.6-1, for building, page 266) $=0.85$
$\mathrm{h}=$ mean roof height $=\mathbf{2 7 . 5 4 ~ f t}$
(ASCE 7-16 26.2.1)
(ASCE 7-16 26.2.2)
where:

- 0.18

$+/-$ Wind Pressure $\quad 64 \%$

Load Case A (Transverse) Load Case B (Longitudinal)
Basic Load Cases

Design pressures for components and cladding

$p=q_{h}\left[\left(G C_{p}\right)-\left(G C_{p i}\right)\right]$
where: $\quad \mathrm{p}=$ pressure on component. (Eq. 30.3-1, pg 33.
$\mathrm{p}_{\text {min }}=16.00$ psf (ASCE 7-16 30.2.2)
$\mathrm{GC}_{\mathrm{p}}=1.00$ external pressure coefficie see table below. (ASCE 7-16 30.3.2)
$q=\quad 18.43{ }^{\circ}$
$\mathrm{p}_{\text {overhang }}=-95.78 \mathrm{psf}$

Load Case A (Transverse)
Longitudinal
Torsional Load Cases
(ASCE 7-16 28.3.3)

 Cladding Coeffs.	Effective Area (ft^{2})	Zone 1		Zone 1'		Zone 2		Zone 2e		Zone 2n		Zone 2r	
		GC ${ }_{\text {p }}$	- GC ${ }_{\text {P }}$	GC ${ }_{\text {p }}$	- GC ${ }_{\text {P }}$	GC ${ }_{\text {p }}$	- GC ${ }_{\text {p }}$	GC ${ }_{\text {p }}$	- GC ${ }_{\text {p }}$	GC ${ }_{\text {P }}$	- GC ${ }_{\text {p }}$	GC ${ }_{\text {p }}$	- GC ${ }_{\text {p }}$
	2187	0.30	-0.80	0.30	-0.80	0.30	-2.20	0.30	-0.80	0.30	-1.00	0.30	-1.00
	Effective	Zone 3		Zone 3e		Zone 3r		Zone 4		Zone 5			
	Area (ft^{2})	GC ${ }_{\text {p }}$	- GC ${ }_{\text {p }}$	GC ${ }_{\text {P }}$	- GC ${ }_{\text {P }}$	GC ${ }_{\text {p }}$	- GC ${ }_{\text {P }}$	GC ${ }_{\text {p }}$	- GC ${ }_{\text {p }}$	GC ${ }_{\text {p }}$	- GC ${ }_{\text {P }}$		
	33	0.30	-2.50	0.30	-2.50	0.30	-1.80	0.99	-1.09	0.99	-1.37		

Comp. \& Cladding Pressures	Zone 1		Zone 1'		Zone 2		Zone 2e		Zone 2n		Zone 2r	
	Positive	Negative										
	3.33	-17.21	3.33	-17.21	3.33	-56.08	3.33	-17.21	3.33	-22.77	3.33	-22.77
	Zone 3		Zone 3e		Zone 3r		Zone 4		Zone 5		(Max Pressure 64.41 psf)	
	Positive	Negative										
	3.33	-64.41	3.33	-64.41	3.33	-44.97	22.37	-25.14	22.37	-33.08		

LOAD CASE 'A' FACTORED LOADS	
$0.6 * \mathrm{~W}_{\mathrm{r}}=\left(\mathrm{Z}_{2}+\mathrm{Z}_{3}\right) * 0.6=$	3.7 psf
$0.6^{*} \mathrm{~W}_{\mathrm{rE}}=\left(\mathrm{Z}_{2 \mathrm{E}}+\mathrm{Z}_{3 \mathrm{E}}\right) * 0.6=$	6.6 psf
$0.6^{*} \mathrm{~W}_{\mathrm{w}}=\left(\mathrm{Z}_{1}+\mathrm{Z}_{4}\right) * 0.6=$	15.5 psf
$0.6^{*} \mathrm{~W}_{\mathrm{wE}}=\left(\mathrm{Z}_{1 \mathrm{E}}+\mathrm{Z4E}\right) * 0.6=$	23.3 psf

LOAD CASE 'B' FACTORED LOADS	
$0.6 * \mathrm{~W}_{\mathrm{r}}=\left(\mathrm{Z}_{2}+\mathrm{Z}_{3}\right) * 0.6=$	$\mathbf{5 . 3} \mathrm{psf}$
$0.6 * \mathrm{~W}_{\mathrm{rE}}=\left(\mathrm{Z}_{2 \mathrm{E}}+\mathrm{Z}_{3 \mathrm{E}}\right) * 0.6=$	$\mathbf{9 . 0} \mathrm{psf}$
$0.6 * \mathrm{~W}_{\mathrm{w}}=\left(\mathrm{Z}_{5}+\mathrm{Z}_{6}\right) * 0.6=$	11.5 psf
$0.6 * \mathrm{~W}_{\mathrm{wE}}=\left(\mathrm{Z}_{5 \mathrm{E}}+\mathrm{Z}_{6 \mathrm{E}}\right) * 0.6=$	$\mathbf{1 7 . 3} \mathrm{psf}$

ROOF COMPONENTS FACTORED LOAD	
$0.6^{*} Z_{r, c \& c}=$	13.7 psf

WALL COMPONENTS FACTORED LOAD	
$0.6^{*} Z_{w, c \& c}=$	15.1 psf

1) FOUNDATIONS \& SLAB ON GRADE:
a) INSTALL FOUNDATION AND PREPARE SOILS FOR SLABS \& FOUNDATIONS ACCORDING TO IBC CHAPTER 18. PROVIDE POSITIVE DRAINAGE AWAY FROM STRUCTURE AND AVOID EXCESSIVE WETTING \& DRYING DURING EXCAVATIONS.
b) ALL FOOTING AND FOUNDATION DESIGNS ARE BASED ON AN ALLOWABLE SOIL BEARING CAPACITY (SEE DESIGN CRITERIA) OF COMPETENT NATIVE SOIL. IF THE SITE HAS A LOWER BEARING CAPACITY THAN ASSUMED THE FOUNDATION PLAN WILL NEED TO BE REDESIGNED. IF SOIL IS DISTURBED, COMPACT SOIL IN 8" LIFTS TO 95\% MAXIMUM DRY DENSITY PER ASTM D1557 OR IN ACCORDANCE WITH GEOTECHNICAL REPORT ASSOCIATED WITH PROJECT.
c) REPLACE ANY ENCOUNTERED EXISTING FILL WITH COMPACTED FILL, SEE NOTE 1.A. ABOVE FOR MORE INFORMATION.
d) MINIMUM FROST DEPTH (SEE DESIGN CRITERIA) FROM LOWEST ADJACENT FINISH GRADE TO BOTTOM OF FOOTING SHALL BE MAINTAINED FOR ALL EXTERIOR FOOTINGS.
e) CONTRACTOR TO VERIFY LOCATIONS FOR STEP FOOTINGS AND FOUNDATION WALLS BASED ON SITE RELATED FINISHED GRADE, IF NECESSARY. FOOTING STEPS ARE TO BE A MAXIMUM OF (2) VERTICALLY TO (1) HORIZONTALLY.
f) ALL SLABS SHALL HAVE REINFORCING PER PLANS \& CONTROL JOINTS AT 10'-0" SPACING MAXIMUM.
g) ALL STRUCTURAL FILL BELOW FOOTINGS SHALL EXTEND OUT PAST FOOTINGS AT A SLOPE OF 1 VERTICAL TO 2 HORIZONTAL UNITS TO COMPETENT SOILS.
h) PROVIDE ADEQUATE DRAINAGE BEHIND ALL WALLS TO ALLEVIATE ANY STANDING WATER.
i) ALL CONCRETE PAD \& APRON LOCATIONS TO BE SECURED TO FOUNDATION WITH \#4 DOWELS AT 24" O.C. EXTEND EXPOSED SIDES A MINIMUM OF 8" BELOW FINISHED GRADE.
j) MINIMUM CONCRETE SLAB DEPTH IS 4".
2) CONCRETE:
a) ALL CONCRETE WORK TO BE DONE IN ACCORDANCE WITH THE CURRENT ACI "STANDARD SPECIFICATION FOR STRUCTURAL CONCRETE" UNLESS NOTED.
b) USE ASTM C150 COMPLIANT TYPE I/II CEMENT, MINIMUM OF 450\#/YARD.
c) ALLOW 5\% (WITHIN 1.5\%) ENTRAINED AIR IN EXPOSED CONCRETE.
d) ALLOW 4" MAXIMUM SLUMP (WITHOUT SUPERPLASTICIZER).
e) USE $3 / 4$ " MAXIMUM NORMAL WEIGHT AGGREGATE. USE OF CHLORIDE ADMIXTURES IS PROHIBITED.
f) THE MINIMUM COMPRESSIVE STRENGTHS FOR CONCRETE AT 28 DAYS SHALL BE AS FOLLOWS
3) (DESIGNED USING 2,500 PSI):
i) ALL FOOTINGS, FOUNDATIONS, AND STEM WALLS F'C = 3,000 PSI.
ii) SLABS ON GRADE F'C = 3,500 PSI.
b) MINIMUM CLEAR PROTECTION FOR REINFORCEMENT SHALL BE AS FOLLOWS:
i) PLACED DIRECTLY AGAINST EARTH: 3".
ii) FORMED SURFACES \#5 BARS OR SMALLER: 1-1/2".
iii) STRUCTURAL SLABS \& INTERIOR WALLS: 1".
c) ALL EMBEDDED ANCHOR BOLTS SHALL BE A36 OR A307 OR F1554 GR. 36 STEEL W/7" MIN. EMBEDMENT. ANCHOR BOLTS TO BE WITHIN 1'-0" OF SILL PLATE ENDS, WITH A MIN. OF TWO PER WALL AND NO CLOSER THAN 6" FROM CONCRETE WALL CORNERS.
d) SAWN CONTROL \& CONSTRUCTION JOINTS SHALL BE MADE AS SOON AS POSSIBLE WITHOUT DAMAGE TO THE SURFACE. FILLING OF SAWN JOINTS WHERE REQUIRED SHALL BE DELAYED AS LONG AS POSSIBLE TO ALLOW MAXIMUM SHRINKAGE TO OCCUR IN SLABS.
e) PROTECT ALL CONCRETE FROM FREEZING.
f) WET SETTING OF REINFORCING BARS IN FOOTINGS AND WALLS IS NOT ALLOWED.
g) BLOCK-OUT ALL STEM WALLS AT ENTRIES AS REQUIRED.
h) CONCRETE FORM WORK TO BE OF ADEQUATE STRENGTH AND BRACED TO PREVENT DEFORMATION.
i) ALL LOWER LEVEL AND RETAINING WALLS WHICH HAVE FILL HIGHER THAN AN INTERIOR FLOOR LEVEL SHALL HAVE AN APPROVED WATERPROOFING MEMBRANE APPLIED TO WITHIN 3" OF FINISHED GRADE HEIGHT.
4) PROVIDE ADEQUATE TEMPORARY BRACING OF CONCRETE AND/OR CMU RETAINING WALLS DURING BACKFILL PRIOR TO INSTALLATION OF MAIN FLOOR FRAMING AND BASEMENT CONCRETE SLAB ON GRADES. WALL DESIGNS ARE BASED ON TOP OF WALL RESTRAINED BY FINISHED FLOOR SYSTEM AND RESISTING SLIDING BY HAVING BASEMENT CONCRETE SLAB ON GRADE FLOOR INSTALLED.
a) REQUIRE THAT ALL GRADING, EXCAVATION, AND INSTALLATION OF FOUNDATIONS BE PERFORMED UNDER THE INSPECTION AND TESTING OF A QUALIFIED GEOTECHNICAL CONSULTANT DURING THE CRITICAL STAGES OF CONSTRUCTION.
b) STAIN \& TEXTURE OF EXPOSED CONCRETE SURFACES PER OWNER'S DIRECTION.
c) USE SIMPSON 'SET’ OR EQUIVALENT FOR FASTENING POST-INSTALLED ANCHORS TO EXISTING CONCRETE.
d) USE 6x6-W4.0xW4.0 WELDED WIRE FABRIC (WWF) FOR SLABS REQUIRING REINFORCEMENT (UNLESS NOTED). PLACE 1-1/2" FROM BOTTOM OF SLAB USING APPROVED METAL DEVICES. LAP ONE FULL MESH AT SPLICES.
e) USE ASTM C827 COMPLIANT NON-METALLIC, NON-SHRINK, 3-DAY 4000 PSI GROUT FOR BASEPLATES.
f) USE ASTM C1116 COMPLIANT FIBRILLATED POLYPROPYLENE TO REINFORCE SLABS (IF USING FIBER REINFORCEMENT IN LIEU OF WWF).
5) REINFORCING STEEL:
a) PLACE REBAR ACCORDING TO CURRENT ACI DETAILING MANUAL.
b) USE ASTM A615 COMPLIANT GRADE 60 BARS; IF INTENDED TO BE WELDED, USE ASTM A706 COMPLIANT GRADE 60 BARS (WELDING OF REBAR NOT PERMITTED UNLESS SPECIFICALLY NOTED OR DETAILED).
c) MINIMUM LENGTH OF LAPPED SPLICES SHALL BE 48 TIMES BAR DIAMETER UNLESS NOTED. SPLICE TOP BARS NEAR MID-SPAN, BOTTOM BARS NEAR SUPPORTS.
d) OTHERWISE. STAGGER SPLICES IN WALLS SO THAT NO TWO ADJACENT BARS ARE SPLICED IN THE SAME LOCATION.
e) WELDED WIRE FABRIC SHALL CONFORM TO ASTM A185, FY = 75,000 PSI.
f) REINFORCING SHALL BE CONTINUOUS THROUGH ALL COLD JOINTS.
g) PROVIDE CORNER BARS W/ 18" LEGS AT CORNERS AND INTERSECTING WALLS AND FOOTINGS, SIZE AND PLACEMENT TO MATCH HORIZONTAL REINFORCEMENT.
h) PROVIDE \#4 CONTINOUS HORIZONTALS AT TOP OF WALL, (2) \#4 CONTINUOUS IN FOOTINGS, AND (2) \#4 CONTINUOUS ABOVE ALL OPENINGS U.N.O. PROVIDE \#4 HORIZONTALS AT ALL INTERSECTING FLOORS AND ROOF LEVELS, BOTTOM OF ALL WINDOWS AND AT 10'-0" O.C. MAXIMUM OR PER PLANS.
i) PROVIDE \#4 VERTICALS AT 24" O.C. AT EACH SIDE OF WALL OPENINGS AND AT EACH END OF WALLS W/ STANDARD HOOK EXTENDING INTO FOOTING.
j) PROVIDE FOUNDATION HOLDOWNS AT ALL SHEAR WALL LOCATIONS PER PLAN, IF APPLICABLE.
6) WOOD FRAMING:
a) STRUCTURAL LUMBER SHALL BE DOUGLAS FIR-LARCH (DF-L) \#2 OR BETTER.
b) WOOD INSTALLED WITHIN 1" OF CONCRETE OR MASONRY SHALL BE REDWOOD OR PRESSURE TREATED.
c) PROVIDE WET USE ADHESIVES.
d) MAXIMUM LUMBER MOISTURE CONTENTS SHALL BE 15\%.
e) ALL FRAMING SHALL BE IN ACCORDANCE WITH THE ADOPTED CODE.
f) PROVIDE SOLID BLOCKING BELOW ALL BEARING WALLS AND POSTS. PROVIDE BLOCKING AT 24" O.C. AT JOISTS PARALLEL WITH BEARING WALLS ABOVE.
g) MINIMUM HEADER AT BEARING WALL TO BE 4x8 WITH 2x6 TRIMMER STUD PLUS 2x6 KING STUD EACH SIDE. HEADERS WITH LARGER LOADING OR DIFFERENT BEARING/KING STUD CONDITIONS WILL BE CALLED OUT IN PLANS.
h) BLOCK AND NAIL ALL HORIZONTAL PANEL EDGES AT SHEAR WALLS \& AS NOTED ON THE PLAN.
(1) ROOF SHEATHING IN AREAS W/ SNOW LOAD < 50 PSF: 7/16" CDX MINIMUM, 24/16 SPAN RATING WITH 8D AT 6" O.C. EDGE AND 12" O.C. FIELD U.N.O.
(2) ROOF SHEATHING IN AREAS W/ SNOW LOAD > 50 PSF: 19/32" CDX MINIMUM, 32/16 SPAN RATING WITH 8D AT 6" O.C. EDGE AND 12" O.C. FIELD U.N.O.
(3) FLOOR SHEATHING: 3/4" CDX MINIMUM, 48/24 SPAN RATING WITH 10D AT 6" O.C. EDGE AND 12" O.C. FIELD U.N.O.
(4) EXT. WALL SHEATHING: 7/16" CDX MINIMUM, 24/16 SPAN RATING WITH AT 6" O.C. EDGE AND 12" O.C. FIELD U.N.O.
(5) ALL SPAN RATINGS TO MEET LOCAL CODES.
i) ORIENTED STRAND BOARD (OSB) WITH THE SAME SPAN RATING MAY BE SUBSTITUTED FOR PLYWOOD NOTED ABOVE. SHEATHING SHALL BE APA RATED EXPOSURE 1. STAGGER SHEATHING END JOINTS 4'-0". PROVIDE 1/8" MINIMUM SPACE AT ALL PANEL EDGES FOR EXPANSION.
j) ALL EXTERIOR WALLS TO BE 2x6 AT 16" O.C. AND INTERIOR NON-LOAD BEARING PARTITIONS TO BE 2x4 AT 16" O.C. STUD WALLS (U.N.O. ON PLAN).
k) PROVIDE STEEL STRAPS AT PIPES IN STUD WALLS AS REQUIRED BY THE ADOPTED CODE.
I) OVER-FRAMING SHALL BE DONE SUCH THAT VERTICAL LOADS ARE TRANSFERRED TO MAIN STRUCTURE BELOW BY DIRECT BEARING AT SPACING NOT TO EXCEED 24" O.C. FOR RAFTERS AND 48" FOR POSTS WHEN SNOW LOAD LESS THAN 50 PSF.
m) METAL HANGERS AND CONNECTIONS ARE ‘SIMPSON’ AND SHALL BE INSTALLED PER ‘SIMPSON’ RECOMMENDATIONS.
n) ENGINEERED "I" JOISTS TO CONFORM TO ASTM D2559 AND BE DESIGNED, CERTIFIED, ERECTED, INSTALLED, AND BRACED PER MANUFACTURER’S SPECS. ALL REFERENCES ON PLANS ARE FOR WEYERHAEUSER PRODUCTS. USE THESE PRODUCTS OR AN APPROVED EQUIVALENT.
o) ALL MICROLLAM LVL PRODUCTIONS SHALL CONFORM TO ASTM D2559 AND HAVE THE MINIMUM SECTION PROPERTIES OF Fb = 2600 PSI, Fv = 285 PSI, E = 2,000,000 PSI.
p) ALL ROOF OPENINGS GREATER THAN 12"x12" SHALL BE FRAMED IN OPENINGS.
q) GLUE-LAM BEAMS SHALL CONFORM TO ANSI/AITC A190.1 AND BE DOUGLAS FIR COMBINATION 24F-V4 FOR SIMPLY SUPPORTED AND 24F-V8 FOR CANTILEVERED AND/OR DOUBLE SPAN BEAMS, Fb = 2400 PSI, Fv = 165 PSI, E = 1,600,000 PSI. PROVIDE WET USE GLUE ON ALL EXTERIOR LOCATIONS.
r) ALL NAILS SPECIFIED TO BE COMMON WIRE NAILS U.N.O.

7) PRE-MANUFACTURED METAL PLATED TRUSSES:

i) TRUSS MANUFACTURER TO PROVIDE PROOF OF 3RD PARTY INSPECTION PER IBC 2303.4.
ii) PRE-MANUFACTURED TRUSS PROVIDER TO VERIFY ALL LOADING PATTERNS TO FOOTINGS BELOW.
b) PRE-MANUFACTURED TRUSS PROVIDER TO PROVIDE SUPPORT AT TRUSSES FOR LOADING SHOWN ON ALL PLANS, SECTIONS AND DETAILS. VERIFY SECOND FLOOR LOADING AND SPECIAL CASE POINT LOADING FROM FRAMED ROOF SYSTEMS.
c) ALL PRE-MANUFACTURED ROOF TRUSSES SHALL BE DESIGNATED AS A DEFERRED SUBMITTAL AND DESIGNED FOR THE ROOF LOADS SHOWN AND ACCOUNT FOR ANY REQUIRED ADDITIONAL DRIFT, VALLEY, OR EAVE LOADS PER CODE.
d) IN ADDITION TO 7 PSF DEAD LOAD ON TOP CHORD, DESIGN BOTTOM CHORD FOR 10 PSF LIVE LOAD AND 10 PSF DEAD LOAD.
e) TRUSS SHOP DRAWINGS SHALL BE SUBMITTED TO THE ENGINEER OF RECORD (E.O.R.) FOR REVIEW AND COMPLIANCE.
8) GENERAL STRUCTURAL NOTES:
a) CONTRACTOR TO VERIFY ALL OPENINGS, BUILDING DIMENSIONS, COLUMN LOCATIONS AND DIMENSIONS WITH OWNER, ENGINEER, DRAFTER, AND/OR COMPONENT MANUFACTURERS PRIOR TO POURING OF ANY CONCRETE FOUNDATIONS OR CONSTRUCTION.
b) THE ENGINEER OF RECORD IS NOT RESPONSIBLE FOR ANY DEVIATIONS FROM THESE PLANS UNLESS SUCH CHANGES ARE AUTHORIZED IN WRITING TO THE ENGINEER OF RECORD.
c) THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING SAFE AND ADEQUATE SHORING AND/OR TEMPORARY STRUCTURAL STABILITY FOR ALL PARTS OF THE STRUCTURE DURING CONSTRUCTION. THE STRUCTURE SHOWN ON THE DRAWINGS HAS BEEN DESIGNED FOR FINAL CONFIGURATION.
d) NOTCHING AND/OR CUTTING OF ANY STRUCTURAL MEMBER IN THE FIELD IS PROHIBITED, UNLESS PRIOR CONSENT IS GIVEN BY THE ENGINEER OF RECORD.
e) DIMENSIONS SHOWN DO NOT INCLUDE THE THICKNESS OF ANY APPLIED FINISH MATERIALS. DIMENSIONS ARE EITHER TO FACE OF STUD, FACE OF MASONRY, OR CENTERLINE OF OPENINGS/STRUCTURE.
f) ALL WORK TO CONFORM TO ALL LOCAL, STATE, AND NATIONAL CODES.
g) CONTRACTOR IS RESPONSIBLE FOR ALL FEES, PERMITS, AND INSPECTIONS AS REQUIRED BY GOVERNING AGENCY.
h) ALL ELEVATION REFERENCES ARE FROM THE MAIN FLOOR ELEVATION, SET AT 0’-0".
i) ALL SHOP DRAWINGS FOR STRUCTURAL SYSTEMS TO BE REVIEWED AND STAMPED BY THE ENGINEER OF RECORD.
9) SPECIAL INSPECTIONS \& STRUCTURAL OBSERVATIONS:
a) PER IBC SECTION 1704, WHEN SPECIFICALLY REQUIRED BY THE LOCAL JURISDICTION, A REPRESENTATIVE FROM THE ENGINEER OF RECORD'S OFFICE SHALL BE PRESENT TO PERFORM ON-SITE STRUCTURAL OBSERVATION VISITS. CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION OF ALL SIGNIFICANT TIMES OF CONSTRUCTION WITH THE ENGINEER OF RECORDS OFFICE PRIOR TO THE DAY OF CONSTRUCTION AND/OR PLACEMENT (MINIMUM OF 7 DAYS). SIGNIFICANT TIMES OF CONSTRUCTION ARE AS FOLLOWS:
i) PLACEMENT OF STRUCTURALLY RELATED REINFORCED CONCRETE FOUNDATIONS, INCLUDING REBAR.
ii) PLACEMENT OF PERIMETER LOAD BEARING WALLS, LOAD SUPPORTING BEAMS AND/OR HEADERS AND LATERAL RESISTING CONNECTION ELEMENTS.
iii) COMPLETION OF STRUCTURAL SYSTEMS AS REQUIRED AND/OR DEFINED BY THE LOCAL JURISDICTION.
b) STRUCTURAL OBSERVATIONS DO NOT INCLUDE OR WAIVE THE RESPONSIBILITY FOR THE SPECIAL INSPECTIONS REQUIRED BY THE IBC SECTION 1705 OR OTHER SECTIONS OF THE CODE AS REQUIRED BY THE LOCAL BUILDING JURISDICTION.
c) ALL SPECIAL INSPECTIONS SHALL BE PERFORMED TO MEET THE REQUIRMENTS OF THE LATEST IBC AND THE LOCAL BUILDING JURISDICTION.
i) ALL SPECIAL INSPECTIONS SHALL BE PERFORMED BY A QUALIFIED PERSON WHO SHALL SHOW COMPETANCE TO THE SATISFACTION OF THE BUILDING OFFICIAL, OWNER, ARCHITECT AND ENGINEER OF RECORD FOR THE PARTICULAR OPERATION. ALL SPECIAL INSPECTION REPORTS SHALL BE SUBMITTED TO THE BUILDING DEPARTMENT AND ENGINEER OF RECORD WITH THE PROJECT INFORMATION AND ADDRESS.

WIND / SEISMIC SHEAR FORCE CALCULATIONS: From ASCE 7-16 Wind \& Seismic Loading Analysis													
	Roof / Floor		Wall					Load above			Loading		
$\stackrel{0}{5}$ $\stackrel{1}{0}$ 3					$\begin{aligned} & \pm \\ & \underline{y} \\ & =\overline{\bar{n}} \\ & 3 \end{aligned}$			$\begin{aligned} & \text { \# } \\ & \frac{0}{3} \\ & \frac{c}{3} \end{aligned}$					

X1-1	9.6	55	14.6	47.0	43.0	18.2	18.0	10.0	47.0	0.06	$=$	5.43	3.67	Wind
X2-1	9.6	55	14.6	47.0	43.0	18.2	18.0	10.0	47.0	0.06	$=$	7.99	5.36	Wind
	9.6	55	14.6	34.0	43.0	19.2	18.0	10.0	34.0	0.06				
X3-1	9.6	55	14.6	34.0	43.0	19.2	18.0	10.0	34.0	0.06	$=$	2.56	1.70	Wind
X4-1	9.6	55	14.6	36.0	71.5	19.0	18.0	10.0	36.0	0.06	$=$	2.70	2.83	Seismic
X5-1	9.6	55	14.6	36.0	71.5	19.0	18.0	10.0	36.0	0.06		2.70	2.83	Seismic

Y1-1	9.6	55	14.6	34.0	81.0	19.2	18.0	10.0	34.0	0.06	$=$	4.01	4.69	Seismic
Y2-1	9.6	55	14.6	34.0	81.0	19.2	18.0	10.0	34.0	0.06		9.47	11.20	Seismic
	9.6	55	14.6	47.3	81.0	18.2	18.0	10.0	47.3	0.06				
Y3-1	9.6	55	14.6	47.3	28.0	18.2	18.0	10.0	47.3	0.06		8.45	4.17	Wind
	9.6	55	11.0	29.3	28.0	19.8	18.0	10.0	29.3	0.06				
Y4-1	9.6	55	11.0	29.3	28.0	19.8	18.0	10.0	29.3	0.06		2.99	1.59	Wind

X1-0	0.0	18	0.0	25.5	25.5	20.5	18.0	9.0	25.5	6.0	1.35	1.41	0.06	$=$	4.09	1.99	Wind
X2-0	0.0	18	0.0	40.0	25.5	18.7	18.0	9.0	40.0	6.0	0.85	0.56	0.06	$=$	4.77	1.46	Wind

$\mathrm{Y} 1-0$	9.6	55	1.0	37.0	32.8	18.9	18.0	9.0	37.0	0	0	0	0.06	$=$	$\mathbf{4} .03$	$\mathbf{3 . 8 2}$	Wind
	0.0	18	0.0	14.0	32.8	23.3	18.0	9.0	14.0	6	2.84	3.36	0.06	$=$	$\mathbf{4}$		

SHEAR WALL CALCULATIONS:						
	Y1-1	Y1-1	Y2-1	Y2-1	Y2-1	Y3-1
Shear Wall Forces						
Number of Panels	1	1	1	1	1	1
Total length of wall	14.50 ft	18.00 ft	18.00 ft	24.50 ft	14.00 ft	23.75 ft
Total length of shear wall	14.50 ft	18.00 ft	18.00 ft	24.50 ft	14.00 ft	23.75 ft
Total length of full ht seg. $\quad L_{w}=$	8.00 ft	6.00 ft	18.00 ft	21.08 ft	14.00 ft	23.75 ft
height of shear wall $\quad \mathrm{H}=$	10.00 ft	16.00 ft	16.00 ft	12.00 ft	10.00 ft	10.00 ft
Maximum opening height $\quad \mathrm{H}^{\prime}=$	6.00 ft	14.00 ft	0.00 ft	12.00 ft	0.00 ft	0.00 ft
Total force at top of wall $\quad \mathrm{V}_{1}=$	2343 lbs	2343 lbs	3798 lbs	4448 lbs	2954 lbs	8449 lbs
Self weight $\quad \mathrm{w}_{\text {DL self }}=$	180 plf	288 plf	288 plf	216 plf	180 plf	180 plf
Applied dead load $\quad \mathrm{W}_{\text {DL above }}=$	40 plf	51 plf	55 plf	163 plf	40 plf	40 plf
Prefered OSB thickness in	7/16	7/16	7/16	7/16	7/16	7/16
Prefered Gyp thickness in	1/2	1/2	1/2	1/2	1/2	1/2
Wall Connected to Concrete $\quad y / \mathrm{n}=$	Y	Y	Y	Y	N	Y
Shear Wall Segments						
	4.00	3.00	18.00	9.50	14.00	23.75
	4.00	3.00		11.58		
Shear Transfer to Concrete						
$\mathrm{T}=$ $1 / 2$ Anchor Bolts @ Provide: Min \# of 1/2 Anchor Bolts Load From Above Holdown	2247 lbs	3500 lbs	1523 lbs	1 lbs	1187 lbs	1992 lbs
	72 " O.C.		72 " O.C.	72 " O.C.		36 " O.C.
	Code Min.		Code Min.	Code Min.		A3
	(3) Min		(4) Min	(5) Min		(9) Min
	0.00	0.00	0.00	0.00	0.00	0.00
	HD2	HD3	HD1	Perp. Wall	S2	HD1
Shear Resisting System						
Force Calculated	397.97	813.68	211.00	269.91	211.00	355.75
	OSB	B.F.	OSB	OSB	OSB	OSB
Min Shear Wall Segment: Provide: $\quad \mathrm{Va}=$	2.86 ft	1.33 ft	4.57 ft	3.43 ft	2.86 ft	2.86 ft
	SW3	4400	SW1	SW2	SW1	SW2
Min Shear Wall Segment: Provide: $\mathrm{Va}=$						
Blocking / Nailing Framing Attachment						
Blocking Unit Shear Blocking Nailing	162 plf	130 plf	211 plf	182 plf	211 plf	356 plf
	NONE	NONE	B1	NONE	B1	B1
	T1	See SCHED	T1	T1	T1	T2
Unit Base Shear						
\% of full height segments $\% \mathrm{fh}=\mathrm{L}_{\mathrm{w}} / \mathrm{L}=$ \% of maximum opening height $\%$ oh $=\mathrm{H}^{\prime} / \mathrm{H}=$ Shear cap adj factor $\mathrm{SCAF}=$ Unit base shear vbase $\mathrm{V}_{1} / \mathrm{L}_{\mathrm{w}}=$ Effective unit base shear vreq $=\mathrm{V}_{\text {bases }} / \mathrm{SCAF}=$ Ovrtrn. mo. Ttl. length of wall OTM $=$	0.552	0.333	1.000	0.860	1.000	1.000
	0.600	0.875	0.000	1.000	0.000	0.000
	0.74	0.48	1.00	0.78	1.00	1.00
	293 plf	391 plf	211 plf	211 plf	211 plf	356 plf
	398 plf	814 plf	211 plf	270 plf	211 plf	356 plf
	31.8 k -ft	18.7 k-ft	60.8 k -ft	68.3 k -ft	29.5 k -ft	84.5 k -ft
Shear wall adjustment factor						
Resist moment total L. of wall \quad RM $=$	23.1 k-ft	1.5 k -ft	$55.6 \mathrm{k}-\mathrm{ft}$	113.8 k-ft	21.5 k -ft	62.0 k-ft
	0.6723	0.3636	1.0000	0.8604	1.0000	1.0000
	0.7360	0.4800	1.0000	0.7817	1.0000	1.0000

SHEAR WALL CALCULATIONS:

	Y4-1		X2-0	X1-0	Y1-0	
Shear Wall Forces						
Number of Panels	1		2	1	1	
Total length of wall	16.00 ft		14.00 ft	37.00 ft	14.00 ft	
Total length of shear wall $\mathrm{L}=$	16.00 ft		2.25 ft	10.67 ft	14.00 ft	
Total length of full ht seg. $\quad L_{w}=$	13.50 ft		2.25 ft	10.67 ft	14.00 ft	
height of shear wall $\quad \mathrm{H}=$	10.00 ft		7.00 ft	9.00 ft	9.00 ft	
Maximum opening height $\quad \mathrm{H}^{\prime}=$	5.00 ft		0.00 ft	0.00 ft	0.00 ft	
Total force at top of wall $\quad \mathrm{V}_{1}=$	2994 lbs		2383 lbs	4091 lbs	4029 lbs	
Self weight $\quad W_{\text {DL self }}=$	180 plf		126 plf	162 plf	162 plf	
Applied dead load $\quad \mathrm{W}_{\text {DL above }}=$	40 plf		55 plf	163 plf	40 plf	
Prefered OSB thickness in	7/16		7/16	7/16	7/16	
Prefered Gyp thickness in	1/2		1/2	1/2	1/2	
Wall Connected to Concrete $\quad y / \mathrm{n}=$	Y		Y	Y	Y	
Shear Wall Segments						
	6.75		2.25	10.67	14.00	
	6.75					
Shear Transfer to Concrete						
1/2 Anchor Bolts @ Provide: Min \# of 1/2 Anchor Bolts Load From Above Holdown	1141 lbs		3500 lbs	2410 lbs	2930 lbs	
	72 " O.C.			36 " O.C.	48 " O.C.	
	Code Min.			A3	A4	
	(3) Min			(4) Min	(4) Min	
	0.00		0.00	0.00	1186.96	
	HD1		HD3	HD2	HD2	
Shear Resisting System						
Force Calculated	239.11		1059.27	383.37	287.80	
	OSB		P.F.	OSB	OSB	
Min Shear Wall Segment: Provide: $\quad \mathrm{Va}=$	2.86 ft		1.33 ft	2.57 ft	2.57 ft	
	SW1		2778	SW2	SW1	
Min Shear Wall Segment:						
Provide: $\quad \mathrm{Va}=$						
Blocking / Nailing Framing Attachment						
Blocking Unit Shear Blocking Nailing	187 plf		340 plf	111 plf	288 plf	
	B1		B1	NONE	B1	
	T1		T2	See SCHED	T1	
Unit Base Shear						
\% of maximum opening height $\%$ oh $=$$\mathrm{H}^{\prime} / \mathrm{H}$ $=$ Shear cap adj factor SCAF Unit base shear vbase $\mathrm{V}_{1} / \mathrm{L}_{\mathrm{w}}$ $=$ Effective unit base shear vreq $=\mathrm{V}_{\text {base }} / \mathrm{SCAF}$$=$ OTM $=$	0.500		0.000	0.000	0.000	
	0.93		1.00	1.00	1.00	
	222 plf		1059 plf	383 plf	288 plf	
	239 plf		1059 plf	383 plf	288 plf	
	32.3 k -ft		16.7 k-ft	36.8 k-ft	36.3 k -ft	
Shear wall adjustment factor						
Resist moment total L. of wall $\begin{aligned} \mathrm{RM} & = \\ \mathrm{r} & = \\ \mathrm{Co}_{0}= & \end{aligned}$	28.1 k-ft		0.5 k -ft	18.5 k -ft	19.8 k-ft	
	0.9153		1.0000	1.0000	1.0000	
	0.9275		1.0000	1.0000	1.0000	

Loads: BLC 1, Wind Load Envelope Only Solution

Wood Section Sets

	Label	Shape	Type	Design List	Material	Design Rules	A [in2]	I (90,270) ...l (0,180) [i...	
1	Chord	4.5X5.5FS	Column	Rectangular	DF/L \#2	Typical	24.75	41.766	62.391
2	Web	2X6	Beam	None	DF/L \#2	Typical	8.25	1.547	20.797
3	Beam	4X12	Beam	None	24F-1.8E DF Balanced	Typical	39.375	40.195	415.283

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Temp [F]
1	N1	0	0	0
2	N8	0	14	0
3	N10	1.92	0	0
4	N17	1.92	14	0
5	N5	0	2	0
6	N6	0	4	0
7	N7	0	6	0
8	N8A	0	8	0
9	N9	0	10	0
10	N10A	0	12	0
11	N11	1.92	2	0
12	N12	1.92	4	0
13	N13	1.92	6	0
14	N14	1.92	8	0
15	N15	1.92	10	0
16	N16	1.92	12	0
17	N17A	14	0	0
18	N18	15.92	0	0
19	N19	14	14	0
20	N20	15.92	14	0
21	N21	14	2	0
22	N22	14	4	0
23	N23	14	6	0
24	N24	14	8	0
25	N25	14	10	0
26	N26	14	12	0
27	N27	15.92	2	0
28	N28	15.92	4	0
29	N29	15.92	6	0
30	N30	15.92	8	0
31	N31	15.92	10	0
32	N32	15.92	12	0

Joint Boundary Conditions

	Joint Label	$X[k / \mathrm{in}]$	$\mathrm{Y}[\mathrm{k} / \mathrm{in}]$	Rotation $[\mathrm{k}-\mathrm{ft} / \mathrm{rad}]$
1	N1	Reaction	Reaction	
2	N18		Reaction	
3	N10		Reaction	
4	N17A	Reaction	Reaction	

Wood Design Parameters

	Label	Shape	Length[...	Le-out[ft]	Le-in[tt]	le-bend to...	le-bend bo...	K-out	K-in	CV	Cr	Out sw..	In sway
1	M1	Chord	14	2	2	Lb out							
2	M2	Chord	14	2	2								
3	M4	Web	2.772			Lb out							
4	M5	Web	1.92			Lb out							
5	M6	Web	2.772			Lb out							
6	M7	Web	1.92			Lb out							
7	M8	Web	2.772			Lb out							
8	M9	Web	1.92			Lb out							
9	M10	Web	2.772			Lb out							
10	M11	Web	1.92			Lb out							
11	M12	Web	2.772			Lb out							
12	M13	Web	1.92			Lb out							
13	M14	Web	2.772			Lb out							
14	M15	Web	1.92			Lb out							
15	M16	Web	2.772			Lb out							
16	M17	Chord	14	2	2								
17	M18	Chord	14	2	2								
18	M19	Web	2.772			Lb out							
19	M20	Web	1.92			Lb out							
20	M21	Web	2.772			Lb out							
21	M22	Web	1.92			Lb out							
22	M23	Web	2.772			Lb out							
23	M24	Web	1.92			Lb out							
24	M25	Web	2.772			Lb out							
25	M26	Web	1.92			Lb out							
26	M27	Web	2.772			Lb out							
27	M28	Web	1.92			Lb out							
28	M29	Web	2.772			Lb out							
29	M30	Web	1.92			Lb out							
30	M31	Web	2.772			Lb out							
31	M31A	Beam	15.92	0	0	Lb out							

Joint Loads and Enforced Displacements (BLC 1 : Wind Load)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/f...
1	N8	L	X	4.4

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Joint	Point
1	Wind Load	WL			Distributed	
2	Dead Load	DL				

Envelope Maximum Member Section Forces

Envelope Maximum Member Section Forces (Continued)

	Member		Axial k]	Loc[ft]	LC	Shear[k]	Loc[ft]	LC	Moment[k-ft]	Loc[ft]	LC
4		min	-. 265	12.104	17	-. 065	2.042	9	-. 016	1.896	9
5	M4	max	. 107	0	16	0	0	1	0	0	1
6		min	-1.891	0	17	0	0	1	0	0	1
7	M5	max	1.27	0	17	0	0	1	0	0	1
8		min	-. 068	0	1	0	0	1	0	0	1
9	M6	max	. 091	0	16	0	0	1	0	0	1
10		min	-1.815	0	17	0	0	1	0	0	1
11	M7	max	1.273	0	17	0	0	1	0	0	1
12		min	-. 065	0	1	0	0	1	0	0	1
13	M8	max	. 094	0	16	0	0	1	0	0	1
14		min	-1.837	0	17	0	0	1	0	0	1
15	M9	max	1.268	0	17	0	0	1	0	0	1
16		min	-. 065	0	1	0	0	1	0	0	1
17	M10	max	. 094	0	16	0	0	1	0	0	1
18		min	-1.835	0	17	0	0	1	0	0	1
19	M11	max	1.28	0	17	0	0	1	0	0	1
20		min	-. 065	0	1	0	0	1	0	0	1
21	M12	max	. 094	0	16	0	0	1	0	0	1
22		min	-1.829	0	17	0	0	1	0	0	1
23	M13	max	1.242	0	17	0	0	1	0	0	1
24		min	-. 065	0	1	0	0	1	0	0	1
25	M14	max	. 094	0	16	0	0	1	0	0	1
26		min	-1.918	0	17	0	0	1	0	0	1
27	M15	max	1.434	0	17	0	0	1	0	0	1
28		min	-. 066	0	1	0	0	1	0	0	1
29	M16	max	. 096	0	16	0	0	1	0	0	1
30		min	-1.967	0	17	0	0	1	0	0	1
31	M17	max	2.598	12.104	9	. 033	10.063	9	. 14	2.042	9
32		min	-5.997	0	17	-. 071	0	9	-. 046	11.958	9
33	M18	max	8.303	0	9	. 024	4.083	9	. 107	4.083	17
34		min	-. 251	12.104	9	-. 063	2.042	9	-. 017	1.896	9
35	M19	max	-. 058	0	18	0	0	1	0	0	1
36		min	-2.076	0	9	0	0	1	0	0	1
37	M20	max	1.509	0	9	0	0	1	0	0	1
38		min	. 04	0	18	0	0	1	0	0	1
39	M21	max	-. 056	0	18	0	0	1	0	0	1
40		min	-2.029	0	9	0	0	1	0	0	1
41	M22	max	1.319	0	9	0	0	1	0	0	1
42		min	. 039	0	18	0	0	1	0	0	1
43	M23	max	-. 056	0	18	0	0	1	0	0	1
44		min	-1.94	0	9	0	0	1	0	0	1
45	M24	max	1.357	0	9	0	0	1	0	0	1
46		min	. 039	0	18	0	0	1	0	0	1
47	M25	max	-. 056	0	18	0	0	1	0	0	1
48		min	-1.946	0	9	0	0	1	0	0	1
49	M26	max	1.345	0	9	0	0	1	0	0	1
50		min	. 039	0	18	0	0	1	0	0	1
51	M27	max	-. 057	0	18	0	0	1	0	0	1
52		min	-1.95	0	9	0	0	1	0	0	1
53	M28	max	1.352	0	9	0	0	1	0	0	1
54		min	. 039	0	18	0	0	1	0	0	1
55	M29	max	-. 055	0	18	0	0	1	0	0	1

Envelope Maximum Member Section Forces (Continued)

Member			Axial[k]	Loc[ft]	LC	Shear[k]	Loc[ft]	LC	Moment[k- ft$]$	Loc[ft]	LC
56		min	-1.918	0	9	0	0	1	0	0	1
57	M30	max	1.348	0	9	0	0	1	0	0	1
58		min	. 041	0	18	0	0	1	0	0	1
59	M31	max	-. 064	0	18	0	0	1	0	0	1
60		min	-2.027	0	9	0	0	1	0	0	1
61	M31A	max	2.656	0	17	1.807	14.096	9	3.329	13.93	9
62		min	-. 004	0	1	-. 785	13.93	9	-2.6	1.99	17

Envelope Member End Reactions

	Member	Membe		Axial [k]	LC	Shear[k]	LC	Moment[k-ft]	LC
1	M1	1	max	. 204	16	0	1	0	1
2			min	-6.633	17	-. 072	17	0	1
3		J	max	1.391	17	. 004	1	0	1
4			min	-. 211	1	-. 013	17	0	1
5	M2	1	max	7.869	9	. 008	9	0	1
6			min	. 08	18	0	1	0	1
7		J	max	. 54	16	. 003	1	0	1
8			min	-. 265	17	-. 002	17	0	1
9	M4	1	max	. 107	16	0	1	0	1
10			min	-1.891	17	0	1	0	1
11		J	max	. 107	16	0	1	0	1
12			min	-1.891	17	0	1	0	1
13	M5	I	max	1.27	17	0	1	0	1
14			min	-. 068	1	0	1	0	1
15		J	max	1.27	17	0	1	0	1
16			min	-. 068	1	0	1	0	1
17	M6	I	max	. 091	16	0	1	0	1
18			min	-1.815	17	0	1	0	1
19		J	max	. 091	16	0	1	0	1
20			min	-1.815	17	0	1	0	1
21	M7	I	max	1.273	17	0	1	0	1
22			min	-. 065	1	0	1	0	1
23		J	max	1.273	17	0	1	0	1
24			min	-. 065	1	0	1	0	1
25	M8	I	max	. 094	16	0	1	0	1
26			min	-1.837	17	0	1	0	1
27		J	max	. 094	16	0	1	0	1
28			min	-1.837	17	0	1	0	1
29	M9	I	max	1.268	17	0	1	0	1
30			min	-. 065	1	0	1	0	1
31		J	max	1.268	17	0	1	0	1
32			min	-. 065	1	0	1	0	1
33	M10	I	max	. 094	16	0	1	0	1
34			min	-1.835	17	0	1	0	1
35		J	max	. 094	16	0	1	0	1
36			min	-1.835	17	0	1	0	1
37	M11	I	max	1.28	17	0	1	0	1
38			min	-. 065	1	0	1	0	1
39		J	max	1.28	17	0	1	0	1
40			min	-. 065	1	0	1	0	1
							Page 19 of 178		

Envelope Member End Reactions (Continued)

	Member	Memb		Axial k$]$	LC	Shear[k]	LC	Moment[k-ft]	LC
41	M12	I	max	. 094	16	0	1	0	1
42			min	-1.829	17	0	1	0	1
43		J	max	. 094	16	0	1	0	1
44			min	-1.829	17	0	1	0	1
45	M13	I	max	1.242	17	0	1	0	1
46			min	-. 065	1	0	1	0	1
47		J	max	1.242	17	0	1	0	1
48			min	-. 065	1	0	1	0	1
49	M14	I	max	. 094	16	0	1	0	1
50			min	-1.918	17	0	1	0	1
51		J	max	. 094	16	0	1	0	1
52			min	-1.918	17	0	1	0	1
53	M15	I	max	1.434	17	0	1	0	1
54			min	-. 066	1	0	1	0	1
55		J	max	1.434	17	0	1	0	1
56			min	-. 066	1	0	1	0	1
57	M16	1	max	. 096	16	0	1	0	1
58			min	-1.967	17	0	1	0	1
59		J	max	. 096	16	0	1	0	1
60			min	-1.967	17	0	1	0	1
61	M17	1	max	. 198	16	0	18	0	1
62			min	-5.997	17	-. 071	9	0	1
63		J	max	2.598	9	-. 003	18	0	1
64			min	. 368	18	-. 024	9	0	1
65	M18	1	max	8.303	9	. 009	9	0	1
66			min	. 166	18	0	18	0	1
67		J	max	-. 078	18	-. 002	18	0	1
68			min	-. 251	9	-. 007	9	0	1
69	M19	I	max	-. 058	18	0	1	0	1
70			min	-2.076	9	0	1	0	1
71		J	max	-. 058	18	0	1	0	1
72			min	-2.076	9	0	1	0	1
73	M20	I	max	1.509	9	0	1	0	1
74			min	. 04	18	0	1	0	1
75		J	max	1.509	9	0	1	0	1
76			min	. 04	18	0	1	0	1
77	M21	I	max	-. 056	18	0	1	0	1
78			min	-2.029	9	0	1	0	1
79		J	max	-. 056	18	0	1	0	1
80			min	-2.029	9	0	1	0	1
81	M22	I	max	1.319	9	0	1	0	1
82			min	. 039	18	0	1	0	1
83		J	max	1.319	9	0	1	0	1
84			min	. 039	18	0	1	0	1
85	M23	I	max	-. 056	18	0	1	0	1
86			min	-1.94	9	0	1	0	1
87		J	max	-. 056	18	0	1	0	1
88			min	-1.94	9	0	1	0	1
89	M24	I	max	1.357	9	0	1	0	1
90			min	. 039	18	0	1	0	1
91		J	max	1.357	9	0	1	0	1
92			min	. 039	18	0	1	0	1
01/23/24								Page 20 of 178	

Envelope Member End Reactions (Continued)

	Member	Memb		Axial [k]	LC	Shear[k]	LC	Moment[k-ft]	LC
93	M25	I	max	-. 056	18	0	1	0	1
94			min	-1.946	9	0	1	0	1
95		J	max	-. 056	18	0	1	0	1
96			min	-1.946	9	0	1	0	1
97	M26	1	max	1.345	9	0	1	0	1
98			min	. 039	18	0	1	0	1
99		J	max	1.345	9	0	1	0	1
100			min	. 039	18	0	1	0	1
101	M27	1	max	-. 057	18	0	1	0	1
102			min	-1.95	9	0	1	0	1
103		J	max	-. 057	18	0	1	0	1
104			min	-1.95	9	0	1	0	1
105	M28	1	max	1.352	9	0	1	0	1
106			min	. 039	18	0	1	0	1
107		J	max	1.352	9	0	1	0	1
108			min	. 039	18	0	1	0	1
109	M29	1	max	-. 055	18	0	1	0	1
110			min	-1.918	9	0	1	0	1
111		J	max	-. 055	18	0	1	0	1
112			min	-1.918	9	0	1	0	1
113	M30	1	max	1.348	9	0	1	0	1
114			min	. 041	18	0	1	0	1
115		J	max	1.348	9	0	1	0	1
116			min	. 041	18	0	1	0	1
117	M31	1	max	-. 064	18	0	1	0	1
118			min	-2.027	9	0	1	0	1
119		J	max	-. 064	18	0	1	0	1
120			min	-2.027	9	0	1	0	1
121	M31A	I	max	2.656	17	1.395	17	0	1
122			min	-. 004	1	-. 211	1	0	1
123		J	max	1.4	9	1.714	9	0	1
124			min	. 042	18	. 125	18	0	1

Envelope Wood Code Checks

	Member	Shape	Code Check	Loc[...	.LC	Shear	Loc[.	LC	Fc' ${ }^{\text {k }}$.Ft' [ksi]	Fb' [k	Fv' [k	RB	CL	CP	Eqn
1	M1	4.5×5....	. 415	1.896	17	. 016	0	17	1.101	. 756	1.194	. 272	6.755	. 995	. 983	3.9-1
2	M2	$4.5 \times 5 \ldots$. 289	0	9	. 014	2.042	9	1.101	. 756	1.194	. 272	6.755	. 995	. 983	3.6 .3
3	M4	2X6	. 194	0	17	. 000	0	18	. 875	1.18	1.847	. 288	9.018	. 987	. 368	3.9-1
4	M5	2X6	. 102	0	17	. 000	0	18	1.51	1.186	1.856	. 288	7.505	. 991	. 635	3.6.3
5	M6	2X6	. 186	0	17	. 000	0	18	. 875	1.18	1.847	. 288	9.018	. 987	. 368	3.9-1
6	M7	2X6	. 102	0	17	. 000	0	18	1.51	1.186	1.856	. 288	7.505	. 991	. 635	3.6 .3
7	M8	2X6	. 189	0	17	. 000	0	18	. 875	1.18	1.847	. 288	9.018	. 987	. 368	3.9-1
8	M9	2X6	. 102	0	17	. 000	0	18	1.51	1.186	1.856	. 288	7.505	. 991	. 635	3.6 .3
9	M10	2X6	. 188	0	17	. 000	0	18	. 875	1.18	1.847	. 288	9.018	. 987	. 368	3.9-1
10	M11	2X6	. 103	0	17	. 000	0	18	1.51	1.186	1.856	. 288	7.505	. 991	. 635	3.6.3
11	M12	2X6	. 188	0	17	. 000	0	18	. 875	1.18	1.847	. 288	9.018	. 987	. 368	3.9-1
12	M13	2X6	. 100	0	17	. 000	0	18	1.51	1.186	1.856	. 288	7.505	. 991	. 635	3.6.3
13	M14	2X6	. 197	0	17	. 000	0	18	. 875	1.18	1.847	. 288	9.018	. 987	. 368	3.9-1
14	M15	2X6	. 115	0	17	. 000	0	18	1.51	1.186	1.856	. 288	7.505	. 991	. 635	3.6.3
15	M16	2X6	. 202	0	17	. 000	0	18	. 875	1.18	1.847	. 288	9.018	. 987	. 368	3.9-1
01/23/24														Page 21 of 178		

Envelope Wood Code Checks (Continued)

Member Shape			Code Check	Loc[...		Shear..	Loc[...	.LC	Fc' [k...	.Ft' [ksi] Fb' [k...	Fv' [k... RB	CL	CP	Eqn
16	M17	4.5X5....	. 380	1.896	17	. 016	0	9	1.101	. 7561.194	. 2726.755	. 995	. 983	3.9-1
17	M18	4.5X5....	. 305	0	9	. 014	2.042	9	1.101	. 7561.194	. 2726.755	. 995	. 983	3.6.3
18	M19	2X6	. 213	0	9	. 000	0	18	. 875	1.181 .847	. 2889.018	. 987	. 368	3.9-1
19	M20	2X6	. 121	0	9	. 000	0	18	1.51	1.1861 .856	. 2887.505	. 991	. 635	3.6.3
20	M21	2X6	. 208	0	9	. 000	0	18	. 875	1.181 .847	. 2889.018	. 987	. 368	3.9-1
21	M22	2X6	. 106	0	9	. 000	0	18	1.51	1.1861 .856	. 2887.505	. 991	. 635	3.6.3
22	M23	2X6	. 199	0	9	. 000	0	18	. 875	1.181 .847	. 2889.018	. 987	. 368	3.9-1
23	M24	2X6	. 109	0	9	. 000	0	18	1.51	1.1861 .856	. 2887.505	. 991	. 635	3.6.3
24	M25	2X6	. 200	0	9	. 000	0	18	. 875	1.181 .847	. 2889.018	. 987	. 368	3.9-1
25	M26	2X6	. 108	0	9	. 000	0	18	1.51	1.1861 .856	. 2887.505	. 991	. 635	3.6.3
26	M27	2X6	. 200	0	9	. 000	0	18	. 875	1.181 .847	. 2889.018	. 987	. 368	3.9-1
27	M28	2X6	. 109	0	9	. 000	0	18	1.51	1.1861 .856	. 2887.505	. 991	. 635	3.6.3
28	M29	2X6	. 197	0	9	. 000	0	18	. 875	1.181 .847	. 2889.018	. 987	. 368	3.9-1
29	M30	2X6	. 108	0	9	. 000	0	18	1.51	1.1861 .856	. 2887.505	. 991	. 635	3.6.3
30	M31	2X6	. 208	0	9	. 000	0	18	. 875	1.181 .847	. 2889.018	. 987	. 368	3.9-1
31	M31A	4X12	. 149	13.93	9	. 162	14.0...	. 9	2.56	1.763 .646	. 42411.97	. 95	1	3.9-3

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	16293 @ 1' 2 3/4"	23203 (5.50")	Passed (70\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	11205 @ 13' 10"	18514	Passed (61\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Pos Moment (Ft-lbs)	47194 @ 8' $21 / 4{ }^{\prime \prime}$	47157	Passed (100\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Neg Moment (Ft-lbs)	-1499 @ 1' 2 3/4"	36350	Passed (4\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.581 @ 8' 2"	0.693	Passed (L/286)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Total Load Defl. (in)	0.653 @ 8' 2"	0.924	Passed (L/254)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)

System : Roof Member Type: Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length $\mathrm{L}=13^{\prime} 91 / 2^{\prime \prime}$.
- Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length $L=1^{\prime} 41 / 16^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - DF	$5.50 "$	$5.50^{\prime \prime}$	$3.86^{\prime \prime}$	1822	14471	16293	Blocking
2 - Stud wall - DF	$5.50 "$	$5.50^{\prime \prime}$	$3.40^{\prime \prime}$	1599	12748	14347	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6^{\prime \prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$15^{\prime} 5 \mathrm{o} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $15^{\prime} 5^{\prime \prime}$	N / A	22.1	--	
1 - Uniform (PSF)	0 to $15^{\prime} 5^{\prime \prime}$ (Front)	$11^{\prime} 9 "$	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12	
Member Reaction (lbs)	11888 @ 16' 5 1/2"	11888 (2.71")	Passed (100\%)	--	1.0 D + 1.0 S (Alt Spans)		
Shear (lbs)	10125 @ 15' $\mathbf{4 '}^{\prime \prime}$	18514	Passed (55\%)	1.15	1.0 D + 1.0 S (Alt Spans)		
Pos Moment (Ft-lbs)	45097 @ 8' 10 7/16"	46836	Passed (96\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)		
Neg Moment (Ft-lbs)	-1184 @ 1' 2 3/4"	36350	Passed (3\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		
Live Load Defl. (in)	0.669 @ 8' 10 1/4"	0.761	Passed (L/273)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)		
Total Load Defl. (in)	0.755 @ 8' 10 1/4"	1.015	Passed (L/242)	--	1.0 D + 1.0 S (Alt Spans)		

- Deflection criteria: LL (L/240) and TL (L/180)
- Overhang deflection criteria: $\mathrm{LL}(2 \mathrm{~L} / 240)$ and $\mathrm{TL}(2 \mathrm{~L} / 180)$.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 0.99 that was calculated using length L=15' $21 / 16^{\prime \prime}$.
- Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length $L=1^{\prime} 315 / 16^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - DF	$5.50 "$	$5.50^{\prime \prime}$	$3.30^{\prime \prime}$	1595	12340	13935	Blocking
2 - Hanger on 13 1/2" DF beam	$5.50 "$	Hanger 1	$2.71^{\prime \prime}$	1429	11167	12596	See note 1

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$16^{\prime} 6 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$16^{\prime} 6 \mathrm{o} ~ \mathrm{o} \mathrm{C}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	HGUS6.88/12	$4.00 "$	N/A	$56-16 \mathrm{~d}$	$20-16 \mathrm{~d}$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $16^{\prime} 51 / 2^{\prime \prime}$	N / A	22.1	--	
1 - Uniform (PSF)	0 to $16^{\prime} 11^{\prime \prime}$ (Front)	$9^{\prime} 3^{\prime \prime}$	17.0	150.0	Default Load

ForteWEB Software Operator
Job Notes

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Trevor SteelsmitЮ01/23/24	
Snake River Engineering	
(208) 453-6512	
trevor@snakeriverengineering.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	15487 @ 2' 8 3/4"	23203 (5.50")	Passed (67\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	9937 @ 4' 2 1/2"	20571	Passed (48\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	49726 @ 11' 7 13/16"	56449	Passed (88\%)	1.15	1.0 D + 1.0 S (Alt Spans)
Neg Moment (Ft-lbs)	-4912 @ 2' 8 3/4"	44877	Passed (11\%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.714 @ 11' $613 / 16^{\prime \prime}$	0.880	Passed (L/296)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Total Load Defl. (in)	0.807 @ 11' $67 / 8{ }^{\prime \prime}$	1.174	Passed (L/262)	--	1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Upward deflection on left cantilever exceeds overhang deflection criteria.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 0.97 that was calculated using length $L=17^{\prime} 47 / 16^{\prime \prime}$.
- Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L=3'113/16".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Factored	
1 - Stud wall - DF	5.50"	5.50"	3.67"	1836	13651	15487	Blocking
2 - Stud wall - DF	5.50"	5.50"	2.82"	1395	10497	11892	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$20^{\prime} 88^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$20^{\prime} 8^{\prime \prime}$ o/c	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $20^{\prime} 8^{\prime \prime}$	N / A	24.6	--	
1 - Uniform (PSF)	0 to $20^{\prime} 8^{\prime \prime}$ (Front)	$7^{\prime} 9 \prime$	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Roof, RB4
1 piece(s) 8 3/4" x 15" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	20720 @ 2' 8 3/4"	30078 (5.50")	Passed (69\%)	--	1.0 D + 1.0 S (All Spans)
Shear (lbs)	13295 @ 4' 2 1/2"	26666	Passed (50\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	66530 @ 11' 7 13/16"	71301	Passed (93\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Neg Moment (Ft-lbs)	-6571 @ 2' 8 3/4"	58174	Passed (11\%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.737 @ 11' $613 / 16{ }^{\prime \prime}$	0.880	Passed (L/287)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Total Load Defl. (in)	0.833 @ 11' $67 / 8{ }^{\prime \prime}$	1.174	Passed (L/254)	--	1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type: Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Upward deflection on left cantilever exceeds overhang deflection criteria.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 0.94 that was calculated using length $L=17^{\prime} 47 / 16^{\prime \prime}$.
- Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L=3'113/16".
- Upward deflection on left cantilever exceeds 0.4 ".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - DF	$5.50 "$	$5.50 "$	$3.79 "$	2446	18275	20720	Blocking
2 - Stud wall - DF	$5.50 "$	$5.50^{\prime \prime}$	$2.91^{\prime \prime}$	1859	14052	15911	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$20^{\prime} 8{ }^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$20^{\prime} 8{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$	

- Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $20^{\prime} 8^{\prime \prime}$	N / A	31.9	--	
1 - Uniform (PSF)	0 to $20^{\prime} 8^{\prime \prime}$ (Front)	$10^{\prime} 41 / 2^{\prime \prime}$	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Roof, RB10
1 piece(s) 8 3/4" x 19 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	10831 @ 8 3/4"	30078 (5.50")	Passed (36\%)	--	1.0 D + 1.0 S (All Spans)
Shear (lbs)	10723 @ 2' 7"	34665	Passed (31\%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	112185 @ 11'4"	115057	Passed (98\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Neg Moment (Ft-lbs)	-11 @ 8 3/4"	76941	Passed (0\%)	0.90	1.0 D (All Spans)
Live Load Defl. (in)	0.645 @ 11' 4 "	1.060	Passed (L/395)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.750 @ 11' 4 "	1.414	Passed (L/339)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180)
- Overhang deflection criteria: $\mathrm{LL}(2 \mathrm{~L} / 240)$ and $\mathrm{TL}(2 \mathrm{~L} / 180)$.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 0.90 that was calculated using length $\mathrm{L}=21^{\prime} 21 / 2^{\prime \prime}$.
- Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length $L=813 / 16^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - DF	$5.50 "$	$5.50 "$	$1.98^{\prime \prime}$	1693	9138	10831	Blocking
2 - Stud wall - DF	$5.50 "$	$5.50 "$	$1.98^{\prime \prime}$	1693	9138	10831	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$22^{\prime} 8{ }^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$22^{\prime \prime} 8 \mathrm{o}$ o/c	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $22^{\prime} 8^{\prime \prime}$	N/A	41.5	--	
1 - Point (Ib)	$11^{\prime} 44^{\prime \prime}$ (Front)	N/A	2446	18275	Linked from: RB4, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Trevor SteelsmitЮ1/23/24	
Snake River Engineering	
(208) 453-6512	
trevor@snakeriverengineering.com	

Roof, RB12
1 piece(s) 6 3/4" x 13 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$9469 @ 51 / 2^{\prime \prime}$	$9469\left(2.16^{\prime \prime}\right)$	Passed (100\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$8105 @ 1^{\prime} 7^{\prime \prime}$	18514	Passed (44\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Pos Moment (Ft-lbs)	$36988 @ 8^{\prime} 31 / 4^{\prime \prime}$	46699	Passed (79\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.575 @ 8^{\prime} 31 / 4^{\prime \prime}$	0.781	Passed (L/326)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.652 @ 8^{\prime} 31 / 4^{\prime \prime}$	1.042	Passed (L/287)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 0.99 that was calculated using length $\mathrm{L}=15^{\prime} 71 / 2^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Factored	
1 - Hanger on $131 / 2^{\prime \prime}$ DF beam	5.50"	Hanger ${ }^{1}$	2.16"	1175	8839	10014	See note ${ }^{1}$
2 - Stud wall - DF	5.50"	5.50"	2.34"	1167	8706	9873	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$16^{\prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$16^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HGUS6.88/12	$4.00 "$	N/A	$56-10 \mathrm{~d}$	$20-10 \mathrm{~d}$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	$51 / 2^{\prime \prime}$ to $16^{\prime} 55^{\prime \prime}$	N / A	22.1	--	
1 - Uniform (PSF)	0 to $16^{\prime} 5^{\prime \prime}$ (Front)	$7^{\prime} 11 / 2^{\prime \prime}$	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator
Job Notes

File Name: 2023-6431 Chambers Residence

Roof, RB13
1 piece(s) 5 1/8" x 13 1/2" 24F-V4 DF Glulam

Overall Length: $16^{\prime} 3^{\prime \prime}$

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6716 @ 5 1/2"	6716 (2.02")	Passed (100\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	6697 @ 1' 7"	14057	Passed (48\%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	35303 @ 5' 9"	35805	Passed (99\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.543 @ 7' 6 1/2"	0.773	Passed (L/341)	--	1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.627 @ 7' 6 5/8"	1.031	Passed (L/296)	--	1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length $\mathrm{L}=15^{\prime} 51 / 2^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Hanger on 13 1/2" DF beam	$5.50^{\prime \prime}$	Hanger 1	$2.02^{\prime \prime}$	903	5813	6716	See note ${ }^{1}$
2 - Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$1.50^{\prime \prime}$	538	3026	3564	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$7^{\prime} 3^{\prime \prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$15^{\prime} 10^{\prime \prime} 0 / \mathrm{c}$	

\bullet Maximum allowable bracing intervals based on applied load.
Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HGUS5.25/10	$4.00^{\prime \prime}$	N/A	$46-10 \mathrm{~d}$	$16-10 \mathrm{~d}$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
0 - Self Weight (PLF)	$51 / 2^{\prime \prime}$ to $16^{\prime} 3^{\prime \prime}$	N/A	16.8	--	
1 - Point (Ib)	$5^{\prime} 9 "$ (Front)	N/A	1175	8839	Linked from: RB12, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

File Name: 2023-6431 Chambers Residence

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$24537 @ 4 "$	$30078\left(5.50{ }^{\prime \prime}\right)$	Passed (82\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$19749 @ 2^{\prime} 4 "$	39998	Passed (49\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	$138644 @ 11^{\prime} 111 / 2^{\prime \prime}$	149623	Passed (93\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.792 @ 11^{\prime} 111 / 2^{\prime \prime}$	1.163	Passed (L/352)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.902 @ 11^{\prime} 111 / 2^{\prime \prime}$	1.550	Passed (L/309)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

Deflection criteria: LL (L/240) and TL (L/180).

- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 0.88 that was calculated using length $\mathrm{L}=23^{\prime} 3^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$4.49^{\prime \prime}$	3012	21525	24537	Blocking
2 - Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$4.49^{\prime \prime}$	3012	21525	24537	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$23^{\prime} 11^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$23^{\prime} 11^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $23^{\prime} 11^{\prime \prime}$	N/A	47.8	--	
1 - Uniform (PSF)	0 to $23^{\prime} 11^{\prime \prime}$ (Front)	12^{\prime}	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Trevor Steelsmit!01/23/24	
Snake River Engineering	
(208) 453-6512	
trevor@snakeriverengineering.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8645 @ 8' 1 1/4"	23203 (5.50")	Passed (37\%)	--	1.0 D + 1.0 S (All Spans)
Shear (lbs)	4420 @ 7' 3"	10285	Passed (43\%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	8804 @ 4' 3/16"	14555	Passed (60\%)	1.15	1.0 D + 1.0 S (Alt Spans)
Neg Moment (Ft-lbs)	-3731 @ 8' $11 / 4{ }^{\prime \prime}$	11219	Passed (33\%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.197 @ 4' $17 / 8{ }^{\prime \prime}$	0.389	Passed (L/474)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Total Load Defl. (in)	0.218 @ 4' 1 13/16"	0.518	Passed (L/427)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)

System : Roof Member Type: Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180)
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length $L=7{ }^{\prime} 45 / 16^{\prime \prime}$.
- Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length $L=3^{\prime} 15 / 8^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - DF	$5.50 "$	$5.50 "$	$1.50 "$	552	4665	5217	Blocking
2 - Stud wall - DF	$5.50 "$	$5.50^{\prime \prime}$	$2.05 "$	954	7691	8645	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$10^{\prime} 6^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$10^{\prime} 6 \mathrm{o} ~ \mathrm{ol}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $10^{\prime} 6^{\prime \prime}$	N / A	12.3	--	
1 - Uniform (PSF)	0 to $10^{\prime} 6^{\prime \prime}$ (Front)	$7^{\prime} 81 / 2^{\prime \prime}$	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Roof, RB8
1 piece(s) 8 3/4" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$11650 @ 8^{\prime} 11 / 4^{\prime \prime}$	$30078\left(5.50{ }^{\prime \prime}\right)$	Passed (39\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	5738 @ $7^{\prime} 11 / 2^{\prime \prime}$	15999	Passed (36\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	$11862 @ 4^{\prime} 3 / 16^{\prime \prime}$	27169	Passed (44\%)	1.15	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Neg Moment (Ft-lbs)	$-5028 @ 8^{\prime} 11 / 4^{\prime \prime}$	20943	Passed (24\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Live Load Defl. (in)	$0.118 @ 4^{\prime} 17 / 8^{\prime \prime}$	0.389	Passed (L/788)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Total Load Defl. (in)	$0.131 @ 4^{\prime} 113 / 16^{\prime \prime}$	0.518	Passed (L/711)	--	$1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~S} \mathrm{(Alt} \mathrm{Spans)}$

System : Roof Member Type: Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180)
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length $L=7{ }^{\prime} 45 / 16^{\prime \prime}$.
- Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length $L=3^{\prime} 15 / 8^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - DF	$5.50 "$	$5.50 "$	$1.50 "$	753	6278	7031	Blocking
2 - Stud wall - DF	$5.50 "$	$5.50^{\prime \prime}$	$2.13^{\prime \prime}$	1300	10350	11650	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$10^{\prime} 6 \mathrm{o} ~ \mathrm{o} \mathrm{C}$	
Bottom Edge (Lu)	$10^{\prime} 6 \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $10^{\prime} 6^{\prime \prime}$	N / A	19.1	--	
1 - Uniform (PSF)	0 to $10^{\prime} 6^{\prime \prime}$ (Front)	$10^{\prime} 41 / 2^{\prime \prime}$	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Roof, RB11
1 piece(s) 8 3/4" x 15" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6175 @ 4"	$30078\left(5.50{ }^{\prime \prime}\right)$	Passed (21\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$6120 @ 1^{\prime} 81 / 2^{\prime \prime}$	26666	Passed (23\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	$63691 @ 10^{\prime} 111 / 2^{\prime \prime}$	69876	Passed (91\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.807 @ 10^{\prime} 111 / 2^{\prime \prime}$	1.063	Passed (L/316)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.942 @ 10^{\prime} 111 / 2^{\prime \prime}$	1.417	Passed (L/271)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Roof Member Type: Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 0.93 that was calculated using length $L=21^{\prime} 3^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$1.50^{\prime \prime}$	1000	5175	6175	Blocking
2 - Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$1.50 "$	1000	5175	6175	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$21^{\prime} 11^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$21^{\prime} 11^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $21^{\prime} 11^{\prime \prime}$	N/A	31.9	--	
1 - Point (lb)	$10^{\prime} 111 / 2^{\prime \prime}$ (Front)	N/A	1300	10350	Linked from: RB8, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$9050 @ 4 "$	$12031(5.50 ")$	Passed (75\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$5139 @ 1^{\prime} 3 / 4^{\prime \prime}$	5544	Passed (93\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$8312 @ 2^{\prime} 51 / 2^{\prime \prime}$	8182	Passed (102\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.143 @ 22^{\prime} 51 / 2^{\prime \prime}$	0.213	Passed (L/357)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.159 @ 22^{\prime} 51 / 2^{\prime \prime}$	0.283	Passed (L/320)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$4.14^{\prime \prime}$	938	8113	9050	Blocking
2 - Stud wall - DF	$5.50^{\prime \prime}$	$5.50 "$	$4.14^{\prime \prime}$	938	8113	9050	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6 " \circ / \mathrm{c}$	
Bottom Edge (Lu)	$4^{\prime} 111^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $4^{\prime} 11^{\prime \prime}$	N/A	7.4	--	
1 - Uniform (PSF)	0 to $4^{\prime} 11^{\prime \prime}$ (Front)	22^{\prime}	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Trevor SteelsmitЮ1/23/24	
Snake River Engineering	
(208) 453-6512	
trevor@snakeriverengineering.com	

Roof, RB15
1 piece(s) 8 3/4" x 25 1/ 2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	25792 @ 4"	30078 (5.50")	Passed (86\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	21337 @ 2' ${ }^{\prime \prime}$	45332	Passed (47\%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	184399 @ 14' 11 1/2"	185484	Passed (99\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	1.135 @ 14' 11 1/2"	1.462	Passed (L/309)	--	1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	1.305 @ 14' 11 1/2"	1.950	Passed (L/269)	--	1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 0.85 that was calculated using length $\mathrm{L}=29^{\prime} 3^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$4.72^{\prime \prime}$	3354	22437	25792	Blocking
2 - Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$4.72^{\prime \prime}$	3354	22437	25792	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$5^{\prime} 4 \prime \prime 0 / \mathrm{c}$	
Bottom Edge (Lu)	$29^{\prime} 11^{\prime \prime} 0 / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $29^{\prime} 11^{\prime \prime}$	N/A	54.2	--	
1 - Uniform (PSF)	0 to $29^{\prime} 11^{\prime \prime}$ (Front)	10^{\prime}	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Roof, OUTLOOKERS

1 piece(s) 2×6 DF No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$918 @ 2^{\prime} 21 / 4^{\prime \prime}$	$1406(1.50 ")$	Passed (65\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$343 @ 1^{\prime} 8^{\prime \prime}$	1139	Passed (30\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$-474 @ 2^{\prime} 21 / 4^{\prime \prime}$	975	Passed (49\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.051 @ 4^{\prime} 3^{\prime \prime}$	0.206	Passed (2L/972)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Total Load Defl. (in)	$0.056 @ 4^{\prime} 3^{\prime \prime}$	0.275	Passed (2L/880)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

Deflection criteria: LL (L/240) and TL (L/180).

- Overhang deflection criteria: $\mathrm{LL}(2 \mathrm{~L} / 240)$ and $\mathrm{TL}(2 \mathrm{~L} / 180)$.
- Right cantilever length exceeds $1 / 3$ member length or $1 / 2$ back span length. Additional bracing should be considered.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	Accessories
1-Hanger on 5 1/2" DF beam	$1.50^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	3	$128 /-78$	$131 /-75$	See note ${ }^{1}$
2 - Stud wall - DF	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	94	825	918	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 2 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$4{ }^{\prime} 2 \mathrm{o} / \mathrm{c}$	

\bullet-Maximum allowable bracing intervals based on applied load.
Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LU26	$1.50 "$	N/A	$6-10 \mathrm{~d} \times 1.5$	$4-10 \mathrm{~d} \times 1.5$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $4^{\prime} 3^{\prime \prime}$	$16^{\prime \prime}$	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

MEMBER REPORT

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1079 @ 12^{\prime} 23 / 4^{\prime \prime}$	$1079\left(1.86^{\prime \prime}\right)$	Passed (100\%)	1.15	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Shear (lbs)	$1079 @ 12^{\prime} 23 / 4^{\prime \prime}$	1794	Passed (60\%)	1.15	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Moment (Ft-lbs)	$2605 @ 7^{\prime} 413 / 16^{\prime \prime}$	3634	Passed (72\%)	1.15	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Live Load Defl. (in)	$0.209 @ 77^{\prime} 35 / 8^{\prime \prime}$	0.513	Passed (L/589)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Total Load Defl. (in)	$0.232 @ 77^{\prime} 311 / 16^{\prime \prime}$	0.684	Passed (L/531)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)

System : Roof
Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch: 3/12

- Overhang deflection criteria: $\operatorname{LL}(2 L / 240)$ and $T L(2 L / 180)$.
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Snow	Factored	
1- Beveled Plate - DF	$6.75 "$	$6.75^{\prime \prime}$	$3.50 "$	176	1503	1679	Blocking
2 - Hanger on $117 / 8^{\prime \prime}$ DF beam	$1.50 "$	Hanger 1	$1.86^{\prime \prime} /-2$	113	994	1107	See note ${ }^{1}$

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- 2 Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$3^{\prime} 5 \mathrm{5} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$7^{\prime} 4 \mathrm{O} / \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.

- Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
2 - Face Mount Hanger	U14X SLD14	2.00	N/A	$14-10 \mathrm{dx1.5}$	$6-10 \mathrm{dx1.5}$	Web Stiffeners	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location	Spacing	Dead $(\mathbf{0 . 9 0})$	Snow $\mathbf{(1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $12^{\prime} 41 / 4^{\prime \prime}$	$16^{\prime \prime}$	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Roof, RF2
1 piece(s) 11 7/8" TJI® 360 @ 24" OC
Support 2 failed reaction check due to insufficient bearing capacity.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.
Member Length : 16' 9 5/8"

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$2274 @ 16^{\prime} 3 / 4^{\prime \prime}$	$1731(3.50 ")$	Failed (131\%)	1.15	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Shear (lbs)	$2274 @ 16^{\prime} 3 / 4^{\prime \prime}$	1961	Failed (116\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Moment (Ft-lbs)	$7715 @ 9^{\prime} 35 / 16^{\prime \prime}$	7107	Failed (109\%)	1.15	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Live Load Defl. (in)	$0.725 @ 99^{\prime} 27 / 16^{\prime \prime}$	0.710	Passed (L/235)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Total Load Defl. (in)	$0.807 @ 99^{\prime} 21 / 2^{\prime \prime}$	0.947	Passed (L/211)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)

System : Roof
Member Type: Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 3/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Upward deflection on left cantilever exceeds overhang deflection criteria.
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	Accessories
1- Beveled Plate - DF	$6.75^{\prime \prime}$	$6.75^{\prime \prime}$	$4.37^{\prime \prime}$	328	2808	3136	Blocking
2 - Hanger on 11 7/8" DF beam	$1.50^{\prime \prime}$	Hanger 1	$-/-2$	239	2076	2315	See note ${ }^{1}$

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$9^{\prime} 7 " \mathrm{o} / \mathrm{c}$	

\bullet TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.
Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A		N/A

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location	Spacing	Dead $(\mathbf{0 . 9 0})$	Snow $(\mathbf{1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $16^{\prime} 21 / 4^{\prime \prime}$	$24^{\prime \prime}$	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Roof, RF3

1 piece(s) 2×12 DF No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.
Member Length : 15 ' 6 1/8"

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1204 @ 12^{\prime} 73 / 4^{\prime \prime}$	$4102(4.38 ")$	Passed (29\%)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Shear (lbs)	$982 @ 3^{\prime} 47 / 16^{\prime \prime}$	2329	Passed (42\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$2876 @ 7^{\prime} 71 / 4^{\prime \prime}$	3138	Passed (92\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Live Load Defl. (in)	$0.230 @ 7^{\prime} 61 / 16^{\prime \prime}$	0.600	Passed (L/625)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Total Load Defl. (in)	$0.259 @ 7^{\prime} 61 / 8^{\prime \prime}$	0.800	Passed (L/557)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 7/12

Deflection criteria: LL (L/240) and TL (L/180)

- Overhang deflection criteria: LL (2L/240) and TL (2L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Snow	Factored	
1- Beveled Plate - DF	$6.75^{\prime \prime}$	$6.75^{\prime \prime}$	$1.61^{\prime \prime}$	202	1543	1745	Blocking
2 - Beveled Plate - DF	$4.38 "$	4.38	$1.50 "$	137	1068	1204	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$3^{\prime} 44^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$15^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Load	Location (Side)	Spacing	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to $12^{\prime} 111 / 8^{\prime \prime}$	$16^{\prime \prime}$	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-138 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Trevor Steelsmith1/23/24	
Snake River Engineering	
(208) 453-6512	
trevor@snakeriverengineering.com	

Roof, RF4
1 piece(s) 11 7/8" TJI® 560 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$4470 @ 6 ' 33 / 8^{\prime \prime}$	$4659\left(5.25^{\prime \prime}\right)$	Passed (96\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$2010 @ 6 '$	2358	Passed (85\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$-6609 @ 66^{\prime} 33 / 8^{\prime \prime}$	10925	Passed (60\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.504 @ 0$	0.647	Passed (2L/308)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Total Load Defl. (in)	$0.549 @ 0$	0.863	Passed (2L/284)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)

System : Roof
Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch: 3/12

- Overhang deflection criteria: $\operatorname{LL}(2 L / 240)$ and $T L(2 L / 180)$.
- Left cantilever length exceeds $1 / 3$ member length or $1 / 2$ back span length. Additional bracing should be considered.
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Snow	Factored	
1- Beveled Plate - DF	$6.75^{\prime \prime}$	$6.75^{\prime \prime}$	$5.08^{\prime \prime}$	468	4002	4470	Blocking, Web Stiffeners
2 - Hanger on 11 7/8" DF beam	$1.75^{\prime \prime}$	Hanger 1	$1.75^{\prime \prime} / /^{2}$	118	1298	1416	See note ${ }^{1}$

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$10^{\prime} 9 " 0 / \mathrm{c}$	
Bottom Edge (Lu)	$6^{\prime} 9 " 0 / \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	U410X SLD14	$2.00 "$	N/A	$14-10 \mathrm{dx} 1.5$	6 -10d	Web Stiffeners

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location	Spacing	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $16^{\prime} 81 / 2^{\prime \prime}$	$24^{\prime \prime}$	17.0	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

PASSED
Floor, Floor: Joist 1
1 piece(s) 11 7/8" TJI ® 210 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$555 @ 51 / 2^{\prime \prime}$	$1005\left(1.75^{\prime \prime}\right)$	Passed (55\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$555 @ 51 / 2^{\prime \prime}$	1655	Passed (34\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$2219 @ 8^{\prime} 51 / 2^{\prime \prime}$	3795	Passed (58\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.234 @ 8^{\prime} 51 / 2^{\prime \prime}$	0.400	Passed (L/821)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.304 @ 8^{\prime} 51 / 2^{\prime \prime}$	0.800	Passed (L/632)	--	$1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~L} \mathrm{(All} \mathrm{Spans)}$
TJ-Pro ${ }^{\text {TM }}$ Rating	42	40	Passed	--	--

System : Floor
Member Type: Joist
Building Use : Residential
Building Code : IBC 2018
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of $23 / 32$ " Weyerhaeuser Edge ${ }^{T M}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{\text {TM }}$ Rating include: None.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1-Hanger on $117 / 8^{\prime \prime}$ DF beam	$5.50^{\prime \prime}$	Hanger 1	$1.75^{\prime \prime} /-^{2}$	135	451	586	
2-Hanger on $117 / 8^{\prime \prime}$ DF beam	$5.50^{\prime \prime}$	Hanger 1	$1.75^{\prime \prime} /-2$	135	451	586	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 11^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$16^{\prime} \mathrm{o} / \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1- Face Mount Hanger	IUS2.06/11.88	$2.00^{\prime \prime}$	N/A	10-10dx1.5	2-Strong-Grip	
2 - Face Mount Hanger	IUS2.06/11.88	2.00	N/A	10-10dx1.5	2-Strong-Grip	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location	Spacing	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1 - Uniform (PSF)	0 to $16^{\prime} 11^{\prime \prime}$	$16^{\prime \prime}$	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Trevor Steelsmit101/23/24
Snake River Engineering
(208) 453-6512
trevor@snakeriverengineering.com

Job Notes

Weyerhaeuser

File Name: 2023-6431 Chambers Residence

Floor, Floor: Joist 1560
1 piece(s) 11 7/8" TJI ${ }^{\circledR} 560$ @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$555 @ 51 / 2^{\prime \prime}$	$1265\left(1.75^{\prime \prime}\right)$	Passed (44\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$555 @ 51 / 2^{\prime \prime}$	2050	Passed (27\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$2219 @ 8^{\prime} 51 / 2^{\prime \prime}$	9500	Passed (23\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.135 @ 8^{\prime} 51 / 2^{\prime \prime}$	0.400	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)
Total Load Defl. (in)	$0.176 @ 8^{\prime} 51 / 2^{\prime \prime}$	0.800	Passed (L/999+)	--	$1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~L} \mathrm{(All} \mathrm{Spans)}$
TJ-Pro ${ }^{\text {TM }}$ Rating	52	40	Passed	--	--

System : Floor
Member Type: Joist
Building Use : Residential
Building Code : IBC 2018
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge ${ }^{\text {TM }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{\text {TM }}$ Rating include: None.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Factored	
1 - Hanger on $117 / 8^{\prime \prime}$ DF beam	5.50"	Hanger ${ }^{1}$	1.75" / - ${ }^{\text {2 }}$	135	451	586	See note ${ }^{1}$
2 - Hanger on $117 / 8{ }^{\text {" D D }}$ D beam	5.50"	Hanger ${ }^{1}$	1.75" / - 2	135	451	586	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$12^{\prime} 1^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$16^{\prime} \mathrm{o} / \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1- Face Mount Hanger	$I U S 3.56 / 11.88$	$2.00^{\prime \prime}$	N/A	$12-10 \mathrm{dx1.5}$	2-Strong-Grip	
2 - Face Mount Hanger	$I U S 3.56 / 11.88$	$2.00^{\prime \prime}$	N/A	$12-10 \mathrm{dx1.5}$	2-Strong-Grip	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location	Spacing	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1 - Uniform (PSF)	0 to $16^{\prime} 11^{\prime \prime}$	$16^{\prime \prime}$	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Trevor Steelsmit101/23/24
Snake River Engineering
(208) 453-6512
trevor@snakeriverengineering.com

J ob Notes

Weyerhaeuser

File Name: 2023-6431 Chambers Residence

PASSED
Floor, Floor: Joist 2
1 piece(s) 11 7/8" TJI ® 210 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$698 @ 13^{\prime} 91 / 2^{\prime \prime}$	$1005\left(1.75^{\prime \prime}\right)$	Passed (69\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$698 @ 13^{\prime} 91 / 2^{\prime \prime}$	1655	Passed (42\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$2340 @ 7^{\prime} 1^{\prime \prime}$	3795	Passed (62\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.175 @ 7^{\prime} 1^{\prime \prime}$	0.335	Passed (L/919)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)
Total Load Defl. (in)	$0.228 @ 7^{\prime} 1^{\prime \prime}$	0.671	Passed (L/707)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	42	40	Passed	--	--

System : Floor
Member Type: Joist
Building Use : Residential
Building Code : IBC 2018
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge ${ }^{\text {TM }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{\text {TM }}$ Rating include: None.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1- Beam - DF	$5.50 "$	$5.50^{\prime \prime}$	$1.75^{\prime \prime}$	170	567	737	Blocking
2 - Hanger on 117/8" DF beam	$5.50 "$	Hanger 1	$1.75^{\prime \prime} /-2$	172	573	745	See note 1

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- 2 Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 9$ " o/c	
Bottom Edge (Lu)	13 ' 10 " o/c	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	IUS2.06/11.88	2.00	N/A	10-10dx1.5	2-Strong-Grip	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1 - Uniform (PSF)	0 to $14^{\prime} 3 \prime$	$24^{\prime \prime}$	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Trevor Steelsmit101/23/24
Snake River Engineering
(208) 453-6512
trevor@snakeriverengineering.com

Weyerhaeuser

File Name: 2023-6431 Chambers Residence

Floor, Floor: Joist 3
1 piece(s) 11 7/8" TJI ® 110 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$667 @ 13^{\prime} 21 / 2^{\prime \prime}$	$910\left(1.75{ }^{\prime \prime}\right)$	Passed (73\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$667 @ 13^{\prime} 21 / 2^{\prime \prime}$	1560	Passed (43\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$2141 @ 6^{\prime} 91 / 2^{\prime \prime}$	3160	Passed (68\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.167 @ 6^{\prime} 91 / 2^{\prime \prime}$	0.321	Passed (L/921)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)
Total Load Defl. (in)	$0.217 @ 6^{\prime} 91 / 2^{\prime \prime}$	0.642	Passed (L/708)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	42	40	Passed	--	--

System : Floor
Member Type: Joist
Building Use : Residential
Building Code : IBC 2018
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of $23 / 32$ " Weyerhaeuser Edge ${ }^{T M}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{\text {TM }}$ Rating include: None.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Factored	
1- Beam - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$1.75^{\prime \prime}$	163	543	706	
2 - Hanger on 117/8" DF beam	$5.50^{\prime \prime}$	Hanger 1	$1.75^{\prime \prime} /-2$	165	550	715	See note ${ }^{1}$

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- 2 Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$3^{\prime} 10 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$13^{\prime} 3^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	IUS1.81/11.88	2.00	N/A	10-10dx1.5	2-Strong-Grip	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1 - Uniform (PSF)	0 to $13^{\prime} 8^{\prime \prime}$	$24 "$	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Trevor Steelsmit101/23/24
Snake River Engineering
(208) 453-6512
trevor@snakeriverengineering.com

Weyerhaeuser

12/20/2023 5:41:04 PM UTC Page 45 of 178 ForteWEB v3.6, Engine: V8.3.1.5, Data: V8.1.4.1

File Name: 2023-6431 Chambers Residence Page 24 / 42

MEMBER REPORT

Floor, FB16
1 piece(s) 5 1/8" x 12" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8109 @ 4"	17617 (5.50")	Passed (46\%)	--	1.0 D + 1.0 S (All Spans)
Shear (lbs)	6468 @ 1'51/2"	12495	Passed (52\%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	26586 @ 7' $21 / 2^{\prime \prime}$	28290	Passed (94\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.420 @ 7' $21 / 2^{\prime \prime}$	0.688	Passed (L/393)	--	1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.681 @ 7' 2 1/2"	0.917	Passed (L/242)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Roof Member Type: Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

Deflection criteria: LL (L/240) and TL (L/180).

- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length $\mathrm{L}=13^{\prime} 9{ }^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$2.53^{\prime \prime}$	3108	5001	8109	Blocking
2 - Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$2.53^{\prime \prime}$	3108	5001	8109	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$14^{\prime} 5{ }^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$14^{\prime} 5{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $14^{\prime} 5^{\prime \prime}$	N / A	14.9	--	
1 - Uniform (PSF)	0 to $14^{\prime} 5 \prime$ (Front)	$9^{\prime} 3^{\prime \prime}$	45.0	75.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Floor, FBA
2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam $®$ LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$2523 @ 13^{\prime} 101 / 2^{\prime \prime}$	$3938(1.50 ")$	Passed (64\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$2392 @ 12^{\prime} 105 / 8^{\prime \prime}$	9081	Passed (26\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Moment (Ft-lbs)	$10743 @ 8^{\prime} 5 / 8^{\prime \prime}$	20525	Passed (52\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.218 @ 77^{\prime} 41 / 4^{\prime \prime}$	0.677	Passed (L/744)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.360 @ 7^{\prime} 43 / 16^{\prime \prime}$	0.903	Passed (L/452)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$1.50 "$	808	1203	2010	Blocking
2 - Hanger on 117/8" DF beam	$5.50^{\prime \prime}$	Hanger 1	$1.50 "$	1018	1560	2578	See note ${ }^{1}$

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$13^{\prime} 7{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$13^{\prime} 11 \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.
Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	LUS414	$2.00 "$	N/A	$10-S D 9112$	$6-$ SD9212	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $13^{\prime} 101 / 2^{\prime \prime}$	N / A	12.1	--	
1 - Uniform (PSF)	0 to $14^{\prime} 4 "$ (Front)	1^{\prime}	45.0	75.0	Default Load
2 - Uniform (PSF)	7^{\prime} to 10^{\prime} (Front)	$7^{\prime} 6^{\prime \prime}$	45.0	75.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Floor, FB17
2 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$4966 @ 51 / 2^{\prime \prime}$	$4966(1.89 ")$	Passed (100\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$3196 @ 11^{\prime} 71 / 2^{\prime \prime}$	9310	Passed (34\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	9024 @ 4' $51 / 2^{\prime \prime}$	24258	Passed (37\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.021 @ 44^{\prime} 51 / 2^{\prime \prime}$	0.400	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.095 @ 44^{\prime} 51 / 2^{\prime \prime}$	0.533	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Roof Member Type: Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Factored	
1 - Hanger on 14" DF beam	5.50"	Hanger ${ }^{1}$	1.89"	4287	736	920	5528	See note ${ }^{1}$
2 - Hanger on 14" DF beam	5.50"	Hanger ${ }^{1}$	1.89"	4287	736	920	5528	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$8^{\prime} \mathrm{o} / \mathrm{C}$	
Bottom Edge (Lu)	$8^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HGUS412	$4.000^{\prime \prime}$	N/A	$56-10 \mathrm{~d}$		
2 - Face Mount Hanger	HHUS410	3.00	N/A	$30-10 \mathrm{~d}$		

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	$51 / 2^{\prime \prime}$ to $8^{\prime} 51 / 2^{\prime \prime}$	N / A	14.3	--	--	
1 - Uniform (PSF)	0 to $8^{\prime} 11^{\prime \prime}$ (Front)	$2^{\prime \prime} 9^{\prime \prime}$	45.0	-	75.0	Default Load
2 - Uniform (PSF)	0 to $8^{\prime} 11^{\prime \prime}$ (Front)	$4^{\prime} 11 / 2^{\prime \prime}$	200.0	40.0	-	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Floor, FB18
2 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$4648 @ 51 / 2^{\prime \prime}$	$4648\left(1.77^{\prime \prime}\right)$	Passed (100\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$4526 @ 12^{\prime} 91 / 2^{\prime \prime}$	10707	Passed (42\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$25225 @ 8^{\prime}$	27897	Passed (90\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.131 @ 7^{\prime} 5^{\prime \prime}$	0.681	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.507 @ 17^{\prime} 41 / 2^{\prime \prime}$	0.908	Passed (L/322)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Factored	
1 - Hanger on 14" DF beam	5.50"	Hanger ${ }^{1}$	1.77"	3582	565	1058	4800	See note ${ }^{1}$
2 - Beam - DF	5.50"	5.50"	2.23"	3442	491	1425	4878	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 4^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$14^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.
Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HGUS412	$4.00 "$	N/A	$56-10 \mathrm{~d}$	$20-10 \mathrm{~d}$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	$\begin{aligned} & \text { Dead } \\ & (0.90) \end{aligned}$	Floor Live (1.00)	$\begin{aligned} & \text { Snow } \\ & \text { (1.15) } \end{aligned}$	Comments
0 - Self Weight (PLF)	$51 / 2^{\prime \prime}$ to 14' ${ }^{\prime \prime}$	N/A	14.3	--	--	
1 - Uniform (PSF)	0 to 8' (Front)	1^{\prime}	45.0	-	75.0	Default Load
2 - Uniform (PSF)	8' to 14'5" (Front)	$2 '$	45.0	-	75.0	Default Load
3 - Uniform (PSF)	0 to 8' (Front)	$1 '$	200.0	40.0	-	Default Load
4 - Point (lb)	8' (Front)	N/A	4287	736	920	Linked from: FB17, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to
www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Floor, FB20
1 piece(s) 5 1/8" x 15" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	12291 @ 15' 5"	17617 (5.50")	Passed (70\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	10219 @ 14' 1/2"	13581	Passed (75\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Pos Moment (Ft-lbs)	37587 @ 7' 5 3/4"	38438	Passed (98\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	0.158 @ 7' 8"	0.377	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.672 @ 7' 9 15/16"	0.754	Passed (L/269)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length $\mathrm{L}=15^{\prime} 1^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Factored	
1 - Stud wall - DF	5.50"	5.50"	3.23 "	7100	981	3247	10347	Blocking
2-Stud wall - DF	5.50"	5.50"	3.84 "	9216	1469	2631	12291	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11'3" o/c	
Bottom Edge (Lu)	15' 9" o/c	

\bullet Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	$\begin{gathered} \text { Dead } \\ (0.90) \end{gathered}$	Floor Live (1.00)	$\begin{aligned} & \text { Snow } \\ & \text { (1.15) } \end{aligned}$	Comments
0 - Self Weight (PLF)	0 to 15' 9"	N/A	18.7	--	--	
1 - Uniform (PSF)	0 to 5' 3' (Front)	$7{ }^{\prime}$	45.0	-	75.0	Default Load
2 - Uniform (PSF)	5' 3" to 13' 6" (Front)	4^{\prime}	200.0	40.0	-	Default Load
3 - Uniform (PSF)	13' ${ }^{\prime \prime}$ to 15' 5" (Front)	$7{ }^{\prime}$	45.0	-	75.0	Default Load
4 - Point (lb)	5' 3" (Front)	N/A	3582	565	1058	Linked from: FB18, Support 1
5 - Point (lb)	13' 6" (Front)	N/A	3582	565	1058	Linked from: FB18, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Floor, FB21
1 piece(s) 5 1/8" x 19 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$11917 @ 4 "$	$17617\left(5.50{ }^{\prime \prime}\right)$	Passed (68\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$9617 @ 2^{\prime} 1^{\prime \prime}$	20304	Passed (47\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	$60392 @ 10^{\prime} 91 / 2^{\prime \prime}$	71191	Passed (85\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.510 @ 10^{\prime} 91 / 2^{\prime \prime}$	0.523	Passed (L/492)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.834 @ 10^{\prime} 91 / 2^{\prime \prime}$	1.046	Passed (L/301)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Floor Member Type: Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 0.95 that was calculated using length $\mathrm{L}=20^{\prime} 11^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$3.72^{\prime \prime}$	4633	7284	11917	Blocking
2 - Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$3.72^{\prime \prime}$	4633	7284	11917	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$21^{\prime} 7{ }^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$21^{\prime} 7{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$	

\bullet Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $21^{\prime} 7^{\prime \prime}$	N / A	24.3	--	
1 - Uniform (PSF)	0 to $21^{\prime} 7^{\prime \prime}$ (Front)	9^{\prime}	45.0	75.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

MEMBER REPORT

Floor, FB22
1 piece(s) 5 1/ 8" x 12" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4804 @ $51 / 2^{\prime \prime}$	$4997(1.50 ")$	Passed (96\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$4189 @ 11^{\prime} 51 / 2^{\prime \prime}$	12495	Passed (34\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Pos Moment (Ft-lbs)	18767 @ $8^{\prime} 31 / 4^{\prime \prime}$	28290	Passed (66\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.379 @ 8^{\prime} 31 / 4^{\prime \prime}$	0.391	Passed (L/495)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.621 @ 8^{\prime} 31 / 4^{\prime \prime}$	0.781	Passed (L/302)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

System : Floor Member Type: Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length $\mathrm{L}=15^{\prime} 71 / 2^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Hanger on 12" DF beam	$5.50^{\prime \prime}$	Hanger 1	$1.50^{\prime \prime}$	1978	3102	5079	See note ${ }^{1}$
2 - Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$1.56 "$	1955	3055	5009	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$16^{\prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$16^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HGUS5.25/10	$4.00 "$	N/A	$46-10 \mathrm{~d}$	$16-10 \mathrm{~d}$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
0 - Self Weight (PLF)	$51 / 2^{\prime \prime}$ to $16^{\prime} 5 "$	$\mathrm{~N} / \mathrm{A}$	14.9	--	
1 - Uniform (PSF)	0 to $16^{\prime} 5^{\prime \prime}$ (Front)	5^{\prime}	45.0	75.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/wood products/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator
Job Notes

File Name: 2023-6431 Chambers Residence

Floor, FB23
1 piece(s) 5 1/8" x 13 1/2" 24F-V8 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$4873 @ 2 "$	11211 (3.50")	Passed (43\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$4680 @ 1^{\prime} 5 "$	14057	Passed (33\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	23924 @ $5^{\prime} 6^{\prime \prime}$	35805	Passed (67\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.295 @ 7^{\prime} 711 / 16^{\prime \prime}$	0.394	Passed (L/640)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.492 @ 7^{\prime} 73 / 4^{\prime \prime}$	0.788	Passed (L/384)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length $\mathrm{L}=15^{\prime} 9{ }^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Stud wall - DF	$3.50 "$	$3.50^{\prime \prime}$	$1.52^{\prime \prime}$	1960	2913	4873	Blocking
2 - Stud wall - DF	$3.50 "$	$3.50^{\prime \prime}$	$1.50 "$	1488	2189	3677	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$16^{\prime} 1^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$16^{\prime} 1^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $16^{\prime} 1^{\prime \prime}$	N/A	16.8	--	
1- Uniform (PSF)	0 to 5' 6" (Front)	1^{\prime}	45.0	75.0	Default Load
2 - Uniform (PSF)	$5^{\prime} 6^{\prime \prime}$ to $16^{\prime} 1$ ' (Front)	2^{\prime}	45.0	75.0	Default Load
3- Point (Ib)	$5^{\prime} 6^{\prime \prime}$ (Front)	N/A	1978	3102	Linked from: FB22, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Floor, FB27
3 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

Overall Length: $16^{\prime} 3^{\prime \prime}$

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$4838 @ 14^{\prime} 1 / 4^{\prime \prime}$	$18047\left(5.50{ }^{\prime \prime}\right)$	Passed (27\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$2104 @ 15^{\prime} 27 / 8^{\prime \prime}$	13622	Passed (15\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$-5121 @ 14^{\prime} 1 / 4^{\prime \prime}$	30788	Passed (17\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.065 @ 16^{\prime} 3^{\prime \prime}$	0.200	Passed (2L/824)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.067 @ 16^{\prime} 3^{\prime \prime}$	0.223	Passed (2L/804)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (0.2") and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Factored	
1 - Stud wall - DF	5.50"	5.50 "	1.50"	238	574/-15	-310	813/-71	Blocking
2-Stud wall - DF	5.50"	5.50"	1.50"	1078	740	3760	4838	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$16^{\prime} 3^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$16^{\prime} 3^{\prime \prime} / \mathrm{c}$	

\bullet Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $16^{\prime} 3^{\prime \prime}$	N / A	18.2	--	--	
1 - Uniform (PSF)	0 to $16^{\prime} 3^{\prime \prime}$ (Front)	2^{\prime}	12.0	40.0	-	Default Load
2 - Uniform (PSF)	$14^{\prime} 3^{\prime \prime}$ to $16^{\prime} 3^{\prime \prime}$ (Front)	10^{\prime}	12.0	-	-	Default Load
3 - Uniform (PSF)	$14^{\prime} 3^{\prime \prime}$ to $16^{\prime} 3^{\prime \prime}$ (Front)	$11^{\prime} 6^{\prime \prime}$	17.0	-	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to
www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Trevor SteelsmitЮ1/23/24	
Snake River Engineering	
(208) 453-6512	
trevor@snakeriverengineering.com	

12/20/2023 5:41:04 PM UTC

File Name: 2023-6431 Chambers Residence

Floor, FB25
3 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8720 @ 4"	18047 (5.50")	Passed (48\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	3309 @ 1' 5 3/8"	13622	Passed (24\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	7474 @ 2' 4"	30788	Passed (24\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.025 @ 2' 4"	0.100	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.029 @ 2' 4"	0.200	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Floor Member Type: Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)				
	Total	Available	Required	Dead	Floor Live	Snow	Factored	
1-Stud wall - DF	$5.50 "$	$5.50 "$	$2.66^{\prime \prime}$	1020	350	7700	8720	Blocking
2 - Stud wall - DF	$5.50 "$	$5.50 "$	$2.66^{\prime \prime}$	1020	350	7700	8720	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 8^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$4^{\prime \prime} 8^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	$\begin{gathered} \text { Dead } \\ (0.90) \end{gathered}$	Floor Live (1.00)	$\begin{aligned} & \text { Snow } \\ & \text { (1.15) } \end{aligned}$	Comments
0 - Self Weight (PLF)	0 to 4' 8"	N/A	18.2	--	--	
1 - Uniform (PSF)	0 to 4' 8' (Front)	$3^{\prime \prime} 9$	12.0	40.0	-	Default Load
2 - Uniform (PSF)	0 to 4' 8' (Front)	22^{\prime}	17.0		150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Trevor Steelsmit101/23/24	
Snake River Engineering	
(208) 453-6512	
trevor@snakeriverengineering.com	

File Name: 2023-6431 Chambers Residence

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5354 @ 4"	18047 (5.50")	Passed (30\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	4199 @ 1' 5 3/8"	11845	Passed (35\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	16219 @ 6' $81 / 2^{\prime \prime}$	26772	Passed (61\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	0.266 @ 6' 8 1/2"	0.319	Passed (L/575)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	0.354 @ 6' 8 1/2"	0.637	Passed (L/432)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1-Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$1.63^{\prime \prime}$	1329	4025	5354	Blocking
2 - Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$1.63^{\prime \prime}$	1329	4025	5354	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$13^{\prime} 5{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$13^{\prime} 5 \mathrm{o} \circ \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
0 - Self Weight (PLF)	0 to $13^{\prime \prime} 5 \prime$	$\mathrm{~N} / \mathrm{A}$	18.2	--	
1 - Uniform (PSF)	0 to $13^{\prime} 5{ }^{\prime \prime}$ (Front)	15^{\prime}	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Trevor Steelsmit101/23/24	
Snake River Engineering	
(208) 453-6512	
trevor@snakeriverengineering.com	

Floor, Deck Joists 1
1 piece(s) 11 7/8" TJ I ® 360 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	993 @ 5 1/2"	1242 (1.75")	Passed (80\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Shear (lbs)	1132 @ 9' 9 1/2"	2157	Passed (52\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	-2146 @ 10' 1/4"	7107	Passed (30\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.066 @ 14' ${ }^{\prime \prime}$	0.211	Passed (2L/999+)	--	1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.108 @ 4' 11 3/8"	0.478	Passed (L/999+)	--	1.0 D + 1.0 S (Alt Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	55	40	Passed	--	--

System : Floor
Member Type : Joist
Building Use : Residential
Building Code : IBC 2018
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (2L/480) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of $23 / 32^{\prime \prime}$ Weyerhaeuser Edge ${ }^{\text {TM }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{\text {TM }}$ Rating include: None.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Snow	Factored	
1- Hanger on 11 7/8" DF beam	$5.50 " 1$	Hanger 1	$1.75^{\prime \prime} /-2$	387	716	1103	See note ${ }^{1}$
2-Stud wall - DF	$5.50 "$	$5.50^{\prime \prime}$	$3.50^{\prime \prime}$	895	1492	2387	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$66^{10} \mathrm{olc}$	
Bottom Edge (Lu)	$66^{610 / c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.

- Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	IUS2.37/11.88	2.00	N/A	10-10dx1.5	2-Strong-Grip	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location	Spacing	Dead $(\mathbf{0 . 9 0})$	Snow $(\mathbf{1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $14^{\prime} 3^{\prime \prime}$	$24 "$	45.0	75.0	Default Load

ForteWEB Software Operator

PASSED
Floor, Deck Joists 2
1 piece(s) 11 7/8" TJI® 560 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1087 @ 51 / 2^{\prime \prime}$	$1455\left(1.75^{\prime \prime}\right)$	Passed (75\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$1087 @ 51 / 2^{\prime \prime}$	2358	Passed (46\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$3690 @ 77^{\prime \prime}$	10925	Passed (34\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Live Load Defl. (in)	$0.142 @ 7^{\prime} 3^{\prime \prime}$	0.340	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.227 @ 7^{\prime} 3^{\prime \prime}$	0.679	Passed (L/719)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	58	40	Passed	--	--

System : Floor
Member Type: Joist
Building Use : Residential
Building Code : IBC 2018
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge ${ }^{\text {TM }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{\text {TM }}$ Rating include: None.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Hanger on 11 7/8" DF beam	$5.50 "$	Hanger 1	$1.75^{\prime \prime} /-2^{2}$	435	725	1160	See note 1
2 - Stud wall - DF	$5.50 "$	$5.50^{\prime \prime}$	$1.75^{\prime \prime}$	430	717	1147	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- 2 Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$9^{\prime} 3$ " o/c	
Bottom Edge (Lu)	$14^{\prime} \mathrm{o} / \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

$|$| Connector: Simpson Strong-Tie | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Support | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| 1 - Face Mount Hanger | IUS3.56/11.88 | 2.00 | N/A | 12-10dx1.5 | 2-Strong-Grip | |

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location	Spacing	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $14^{\prime} 5^{\prime \prime}$	$16^{\prime \prime}$	45.0	75.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

Trevor Steelsmit101/23/24
Snake River Engineering
(208) 453-6512
trevor@snakeriverengineering.com

Weyerhaeuser

12/20/2023 5:41:04 PM UTC Page 58 of 178 ForteWEB v3.6, Engine: V8.3.1.5, Data: V8.1.4.1

File Name: 2023-6431 Chambers Residence Page 39 / 42

MEMBER REPORT

Floor, Deck Joists 3
1 piece(s) 11 7/8" TJI® 360 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge ${ }^{\text {TM }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{\text {TM }}$ Rating include: None.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Factored	
1 - Hanger on $117 / 8^{\prime \prime}$ DF beam	5.50"	Hanger ${ }^{1}$	2.57" / - ${ }^{\text {2 }}$	1189	238	1427	See note ${ }^{1}$
2 - Hanger on 11 7/8" DF beam	5.50"	Hanger ${ }^{1}$	2.57" / - 2	1189	238	1427	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$5^{\prime} 11^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$8^{\prime} \circ / \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A		
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A		

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location	Spacing	Dead (0.90)	Floor Live (1.00)	Comments
1 - Uniform (PSF)	0 to $8^{\prime} 11^{\prime \prime}$	$16^{\prime \prime}$	200.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Trevor Steelsmit101/23/24
Snake River Engineering
(208) 453-6512
trevor@snakeriverengineering.com

J ob Notes

Weyerhaeuser

File Name: 2023-6431 Chambers Residence

MEMBER REPORT

Floor, Deck Joists 4
1 piece(s) 11 7/8" TJI® 560 @ 12" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1045 @ 51 / 2^{\prime \prime}$	$1455\left(1.75^{\prime \prime}\right)$	Passed (72\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$1045 @ 51 / 2^{\prime \prime}$	2358	Passed (44\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Moment (Ft-lbs)	$4550 @ 9^{\prime} 2^{\prime \prime}$	10925	Passed (42\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Live Load Defl. (in)	$0.265 @ 9^{\prime} 2^{\prime \prime}$	0.435	Passed (L/790)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Building Use $:$: Residential					
Building Code : IBC 2018					
Total Load Defl. (in)	$0.423 @ 9^{\prime} 2^{\prime \prime}$	0.871	Passed (L/494)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	55	40	Passed	--	--

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge ${ }^{\text {TM }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{\text {TM }}$ Rating include: None.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
1-Hanger on 117/8" DF beam	$5.50^{\prime \prime}$	Hanger 1	$1.75^{\prime \prime} /-2$	413	688	1100	See note ${ }^{1}$
2 - Hanger on $117 / 8^{\prime \prime}$ DF beam	$5.50^{\prime \prime}$	Hanger 1	$1.75^{\prime \prime} /-2$	413	688	1100	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$8^{\prime} 44^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$17^{\prime} 5{ }^{\prime \prime}$ o/c	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1- Face Mount Hanger	IUS3.56/11.88	$2.00 "$	N/A	12-10dx1.5	2-Strong-Grip	
2 - Face Mount Hanger	IUS3.56/11.88	$2.00 "$	N/A	$12-10 \mathrm{dx} \times 1.5$	2-Strong-Grip	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location	Spacing	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to $18^{\prime} 4 \prime \prime$	$12^{\prime \prime}$	45.0	75.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Floor, HDR1
3 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$31373 @ 71 / 2^{\prime \prime}$	35438 (9.00")	Passed (89\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$8633 @ 1^{\prime} 87 / 8^{\prime \prime}$	13622	Passed (63\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$14342 @ 4^{\prime} 71 / 2^{\prime \prime}$	30788	Passed (47\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.135 @ 5^{\prime} 215 / 16^{\prime \prime}$	0.325	Passed (L/869)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.199 @ 5^{\prime} 31 / 2^{\prime \prime}$	0.488	Passed (L/589)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Wall Member Type: Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240)
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Factored	
1 - Trimmer - DF	9.00"	9.00 "	7.97"	5197	1797	26176	31373	None
2 - Trimmer - DF	6.00 "	6.00"	1.50"	1911	1715	2821	5313	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$10^{\prime} 9 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$10^{\prime} 9 " \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	$\begin{gathered} \text { Dead } \\ (0.90) \end{gathered}$	Floor Live (1.00)	$\begin{aligned} & \text { Snow } \\ & \text { (1.15) } \end{aligned}$	Comments
0 - Self Weight (PLF)	0 to 10'9"	N/A	18.2	--	--	
1 - Uniform (PSF)	0 to 10'9"	$5 '$	45.0	-	75.0	Default Load
2 - Uniform (PSF)	0 to 10' 9"	8' ${ }^{\prime \prime}$	12.0	40.0	-	Default Load
3 - Point (lb)	1^{\prime}	N/A	3050	-	21516	
4 - Uniform (PSF)	0 to 1^{\prime}	23^{\prime}	17.0	-	150.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Trevor Steelsmith1/23/24	
Snake River Engineering	
(208) 453-6512	
trevor@snakeriverengineering.com	

Roof, HDR2*

1 piece(s) 5 1/2" x 18" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	16202 @ 3"	16088 (4.50")	Passed (101\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	13986 @ 8' 10 1/2"	20114	Passed (70\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	41884 @ 5' 7 15/16"	68310	Passed (61\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.148 @ 5' 5 1/2"	0.342	Passed (L/832)	--	1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.167 @ 5' 5 9/16"	0.512	Passed (L/735)	--	1.0 D + 1.0 S (All Spans)

System : Wall Member Type: Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length $\mathrm{L}=10^{\prime} 3^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	
	$4.50 "$	$4.50^{\prime \prime}$	$4.53^{\prime \prime}$	1822	14380	16202	None
2 - Trimmer - DF	$13.50 "$	$13.50^{\prime \prime}$	$9.34^{\prime \prime}$	4631	28767	33398	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$11^{\prime} 66^{\prime \prime} / \mathrm{c}$	
Bottom Edge (Lu)	$11^{\prime} 6 \mathrm{o}$ o/c	

\bullet Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $11^{\prime} 6^{\prime \prime}$	N / A	24.1	--	
1 - Uniform (PSF)	0 to $11^{\prime} 6^{\prime \prime}$	17^{\prime}	17.0	150.0	Default Load
2 - Point (Ib)	10^{\prime}	N / A	2853	13822	Linked from: GRD2, Support 2

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Trevor Steelsmit101/23/24	
Snake River Engineering	
(208) 453-6512	
trevor@snakeriverengineering.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$22459 @ 16^{\prime} 21 / 4^{\prime \prime}$	24063 (5.50")	Passed (93\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (Adj Spans)
Shear (lbs)	$13028 @ 17^{\prime} 47 / 8^{\prime \prime}$	18163	Passed (72\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Moment (Ft-lbs)	$26197 @ 20^{\prime} 10^{\prime \prime}$	41051	Passed (64\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Live Load Defl. (in)	$0.190 @ 20^{\prime} 415 / 16^{\prime \prime}$	0.224	Passed (L/566)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Total Load Defl. (in)	$0.205 @ 20^{\prime} 57 / 16^{\prime \prime}$	0.448	Passed (L/524)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Member should be side-loaded from both sides of the member or braced to prevent rotation.

Supports	Bearing Length			Loads to Supports (lbs)				
	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1-Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$1.50 "$	1134	$3529 /-66$	-611	4663	Blocking
2 - Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$5.13^{\prime \prime}$	4492	7779	16176	22459	Blocking
3-Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$5.06 "$	3047	4334	19096	22143	Blocking
4-Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$1.50^{\prime \prime}$	1813	$2035 /-245$	-1813	3848	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$17^{\prime} 33^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$22^{\prime} \mathrm{o} \mathrm{c}$	

\bullet-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	$\begin{gathered} \text { Dead } \\ (0.90) \end{gathered}$	Floor Live (1.00)	$\begin{aligned} & \text { Snow } \\ & \text { (1.15) } \end{aligned}$	Comments
0 - Self Weight (PLF)	0 to $33^{\prime} 1^{\prime \prime}$	N/A	24.2	--	--	
1 - Uniform (PSF)	0 to 16' (Front)	12' 8"	12.0	40.0	-	Default Load
2 - Uniform (PSF)	16' to 21' (Front)	8'6"	12.0	40.0	-	Default Load
3 - Uniform (PSF)	21' to 33' ${ }^{\prime \prime}$ ((ront)	11' ${ }^{\prime \prime}$	12.0	40.0	-	Default Load
4 - Uniform (PSF)	16' to 21' (Front)	22^{\prime}	17.0	-	150.0	Default Load
5 - Point (lb)	21' (Front)	N/A	926	-	8173	Default Load
6 - Point (lb)	25' (Front)	N/A	926	-	8173	Default Load
7 - Point (lb)	32' 9"' (Front)	N/A	1389	-	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Floor, Copy of Deck Joists 1 (210)*

1 piece(s) 11 7/8" TJI® 210 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	993 @ 5 1/2"	1156 (1.75")	Passed (86\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Shear (lbs)	1126 @ 9' 9 1/2"	2094	Passed (54\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	-2146 @ 10' 1/4"	4364	Passed (49\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.077 @ 14' 3 "	0.211	Passed (2L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Total Load Defl. (in)	0.124 @ 4' 11 3/8"	0.478	Passed (L/923)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	53	40	Passed	--	--

System : Floor
Member Type : Joist
Building Use : Residential
Building Code : IBC 2018
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: $\mathrm{LL}(2 \mathrm{~L} / 480)$ and $\mathrm{TL}(2 \mathrm{~L} / 240)$.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of $23 / 32^{\prime \prime}$ Weyerhaeuser Edge ${ }^{\text {TM }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{\text {TM }}$ Rating include: None.

Supports	Bearing Length			Loads to Supports (lbs)			
	Total	Available	Required	Dead	Snow	Factored	Accessories
1- Hanger on 11 7/8" DF beam	$5.50 " 1$	Hanger 1	$1.75^{\prime \prime} /-2$	387	716	1103	See note ${ }^{1}$
2-Stud wall - DF	$5.50 "$	$5.50^{\prime \prime}$	$3.50^{\prime \prime}$	895	1492	2387	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$5^{\prime} 2^{\prime \prime}$ o/c	
Bottom Edge (Lu)	5^{\prime} o/c	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HU2.1/9	$2.50 "$	N/A	$14-10 \mathrm{dx} 1.5$	6 -10dx1.5	Web Stiffeners

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location	Spacing	Dead $(\mathbf{0 . 9 0})$	Snow $(\mathbf{1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $14^{\prime} 3^{\prime \prime}$	$24 "$	45.0	75.0	Default Load

ForteWEB Software Operator

Floor, Copy of Deck Joists 2 (110)*

1 piece(s) 11 7/8" TJ I ® 110 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1087 @ 51 / 2^{\prime \prime}$	$1087\left(1.88^{\prime \prime}\right)$	Passed (100\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$1087 @ 51 / 2^{\prime \prime}$	1794	Passed (61\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$3690 @ 77^{\prime \prime}$	3634	Passed (102\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Live Load Defl. (in)	$0.270 @ 7^{\prime} 3^{\prime \prime}$	0.340	Passed (L/605)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.431 @ 7^{\prime} 3^{\prime \prime}$	0.679	Passed (L/378)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	47	40	Passed	--	--

System : Floor
Member Type : Joist
Building Use : Residential
Building Code : IBC 2018
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of $23 / 32$ " Weyerhaeuser Edge ${ }^{T M}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{\text {TM }}$ Rating include: None.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Factored	
1 - Hanger on $117 / 8{ }^{\prime \prime}$ DF beam	5.50"	Hanger ${ }^{1}$	1.88" / - 2	435	725	1160	See note ${ }^{1}$
2 - Stud wall - DF	5.50"	5.50"	2.08"	430	717	1147	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$2^{\prime} 9 " \circ / \mathrm{c}$	
Bottom Edge (Lu)	$14^{\prime} \mathrm{o} / \mathrm{c}$	

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

$|$| Connector: Simpson Strong-Tie | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Support | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| 1 - Face Mount Hanger | IUS1.81/11.88 | 2.00 | N/A | 10-10dx1.5 | 2-Strong-Grip | |

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location	Spacing	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $14^{\prime} 5^{\prime \prime}$	$16^{\prime \prime}$	45.0	75.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Trevor Steelsmit101/23/24
Snake River Engineering
(208) 453-6512
trevor@snakeriverengineering.com

Weyerhaeuser

1/23/2024 6:42:49 PM UTC

File Name: 2023-6431 Chambers Residence

WOOD HEADER ALLOWABLE LOADS (kips/ft)											
Load Duration Factor: 1.15 LVL Grade: 2.0E				Top Chord Bracing: 2'-0" O.C. Max TL Deflection: L/240, 0.75in Repetitive Stress Increase: No							
	Header Span										
Header Type	2'	3'	4'	5'	6'	8'	10'	12'	14'	16'	18'
(2) 2x4 DF Stud	1.15	0.69	0.29	0.22	0.12	NA	NA	NA	NA	NA	NA
(3) 2x4 DF Stud	1.84	1.04	0.46	0.35	0.18	NA	NA	NA	NA	NA	NA
(2) 2×6 DF \#2	3.34	1.44	0.83	0.48	0.36	0.20	0.12	NA	NA	NA	NA
(3) 2×6 DF \#2	5.06	2.19	1.27	0.72	0.55	0.30	0.18	0.13	NA	NA	NA
(2) 2×8 DF \#2	5.41	2.30	1.27	0.80	0.59	0.32	0.20	0.14	0.09	NA	NA
(3) 2×8 DF \#2	8.74	3.39	2.19	1.18	0.97	0.53	0.33	0.23	0.16	0.12	NA
(2) 2x10 DF \#2	8.05	3.39	1.96	1.18	0.89	0.48	0.31	0.21	0.15	0.10	NA
(3) 2×10 DF \#2	13.23	5.18	3.22	1.80	1.38	0.82	0.52	0.36	0.25	0.20	0.15
(2) 2×12 DF \#2	10.81	4.83	2.65	1.60	1.15	0.67	0.41	0.29	0.21	0.15	0.12
(3) 2x12 DF \#2	17.94	7.02	4.49	2.40	1.96	1.10	0.70	0.48	0.35	0.26	0.21
(2) 1-3/4x7-1/4 LVL	13.80	6.79	3.80	2.40	1.61	0.94	0.52	0.30	0.18	0.12	NA
(3) 1-3/4x7-1/4 LVL	20.70	10.47	5.64	3.50	2.53	1.38	0.79	0.45	0.28	0.17	NA
(2) 1-3/4×9-1/2 LVL	24.73	10.47	5.64	3.75	2.65	1.50	0.92	0.63	0.39	0.24	0.15
(3) 1-3/4×9-1/2 LVL	37.15	17.25	8.51	6.00	4.03	2.30	1.38	0.95	0.60	0.37	0.22
(2) 1-3/4×11-7/8 LVL	40.71	17.25	8.86	6.00	4.49	2.53	1.61	1.12	0.82	0.53	0.32
(3) 1-3/4x11-7/8 LVL	61.30	24.15	13.23	8.75	6.67	3.80	2.42	1.61	1.15	0.79	0.48
(2) 1-3/4x14 LVL	56.47	24.15	12.54	8.00	5.75	3.45	2.19	1.50	1.13	0.86	0.54
(3) 1-3/4x14 LVL	85.10	28.75	18.86	12.00	8.63	5.29	3.34	2.30	1.61	1.27	0.81

Beam Calculations

Trib	Additional Drift	Roof	Floor	Deck	Wall	Total Load	Total Load
	0.0	3	7	9	3.33		2,679.9 plf
Dead Load	-	51.0	84.0	405.0	59.9	599.9 plf	
Live / Snow Load	0	450.0	280.0	1350.0	-	2,080.0 plf	

Description:	3.0 ft Opening	3.8 ft Opening						
	(2) 2×12	(2)9-1/2"						
Header Callout	DF-L No. 2	LVL 2.0E						
Trim	(2) 2×6	(2) 2×6						
	DF-L No. 2	DF-L No. 2						
King Studs	(1) 2×6 DF-L No. 2	(1) 2×6 DF-L No. 2						

Wood Design								
Species	DF-L	LVL						
Grade	No. 2	$2.0 E$						
Width	3.00 in	3.50 in						
Depth	11.25 in	9.50 in						

Reaction								
Dead Load	900 lbs	1,125 lbs						
Live Load	$3,120 \mathrm{lbs}$	3,900 lbs						

Load								

Adjustment Factors

| | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cd | 1.15 | 1.15 | | | | |
| CF | 1 | 1.1 | | | | |

Material Properties

| Fb | 900 psi | $2,900 \mathrm{psi}$ | | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fv | 180 psi | 285 psi | | | | |
| E | $1,600,000 \mathrm{psi}$ | $2,000,000 \mathrm{psi}$ | | | | |
| Emin | $580,000 \mathrm{psi}$ | $1,016,535 \mathrm{psi}$ | | | | |

Calculated Prop.								
A	33.75 in^2	$33.25 \mathrm{in}^{\wedge} 2$						
1	$355.96 \mathrm{in}^{\wedge} 4$	250.07 in^4						
S	$63.28 \mathrm{in}^{\wedge} 3$	$52.65 \mathrm{in}^{\wedge} 3$						
RB	9.63	8.48						
Emin'	580,000 psi	1,016,535 psi						
FbE	7,508 psi	16,968 psi						
Fb*	1,035 psi	3,669 psi						
CL	1	1						

| Shear and Moment | | | | | | |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M | $36,179 \mathrm{lb}-\mathrm{in}$ | $56,530 \mathrm{lb}-\mathrm{in}$ | | | | |
| | $4,020 \mathrm{lbs}$ | $5,025 \mathrm{lbs}$ | | | | |

Stress						,		
fb	572 psi	1,074 psi						
Fb^{\prime}	1,027 psi	3,619 psi						
fb/Fb'	0.56	0.30						
fv	179 psi	227 psi						
Fv'	207 psi	328 psi						
fv/Fv'	0.86	0.69						
Max Ratio	0.86	0.69						
	Pass	Pass						
Deflection								
Δ tr	0.01 in	0.02 in						
	L/4,198	L/1,887						
هu	0.01 in	0.02 in						
	L/5,409	L/2,432						
	Pass	Pass						

Beam Calculations

	Additional Drift	Roof	Floor	Deck	Wall	Total Load

Wood Design								
Species	DF-L							
Grade	No. 2							
Width	4.50 in							
Depth	5.50 in							

Adjustment Factors								
cd	1.15							
CF	1.3							
Material Properties								
Fb	900 psi							
Fv	180 psi							
E	1,600,000 psi							
Emin	580,000 psi							

Calculated Prop.								
A	$24.75 \mathrm{in}^{\wedge} 2$							
	$62.39 \mathrm{in}^{\wedge} 4$							
s	$22.69 \mathrm{in}^{\wedge} 3$							
RB	4.49							
Emin'	580,000 psi							
FbE	34,554 psi							
Fb^{*}	1,346 psi							
cı	1							

Stress								
fb	1,177 psi							
Fb'	1,343 psi							
fb/Fb'	0.88							
fv	180 psi							
Fv'	207 psi							
fv/Fv'	0.87							
Max Ratio	0.88							
	Pass							
Deflection								
ΔT_{L}	0.04 in							
	L/997							
هu	0.03 in							
	L/1,280							
	Pass							

Beam Calculations

Trib	Additional Drift	Roof	Floor	Deck	Wall	Total Load	Total Load
	0.0	3	7.5	0	3.33		950.9 plf
Dead Load Live / Snow Load	$\overline{0}$	51.0	90.0 300.0	0.0	59.9	200.9 plf 750.0 plf	

Wood Design								
Species	LVL							
Grade	2.05							
Width	3.50 in							
Depth	9.50 in							

Reaction								
Dead Load	954 lbs							
Live Load	3,563 lbs							

| Adjustment Factors | Cd | 1.15 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | CF | 1.1 | | | | | |

| Material Properties | | | | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fb | $2,900 \mathrm{psi}$ | | | | | |
| Fv | 285 psi | | | | | |
| E | $2,000,000 \mathrm{psi}$ | | | | | |
| Emin | $1,016,535 \mathrm{psi}$ | | | | | |

Calculated Prop.								
A	33.25 in^2							
1	$250.07 \mathrm{in}^{\wedge} 4$							
s	$52.65 \mathrm{in}^{\wedge} 3$							
RB	12.89							
Emin'	1,016,535 psi							
FbE	7,339 psi							
Fb*	3,669 psi							
CL	1							

Shear and Moment								
M	$128,734 \mathrm{lb}-\mathrm{in}$							
v	4,517 lbs							

Beam Calculations

	Additional Drift	Roof	Floor	Deck	Wall	Total Load

Wood Design								
Species	LVL							
Grade	2.05							
Width	3.50 in							
Depth	11.88 in							

| Adjustment Factors | Cd | 1.15 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | CF | 1 | | | | | |

Material Properties								
Fb	2,900 psi							
Fv	285 psi							
E	2,000,000 psi							
Emin	1,016,535 psi							

Calculated Prop.								
A	41.56 in^2							
1	488.41 in^4							
s	82.26 in^3							
RB	14.97							
Emin'	1,016,535 psi							
FbE	5,442 psi							
Fb*	3,335 psi							
CL	1							

| Shear and Moment | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M | $165,554 \mathrm{lb}-\mathrm{in}$ | | | | |
| $5,518 \mathrm{lbs}$ | | | | | |

Beam Calculations

	Additional Drift	Roof	Floor	Deck	Wall	Total Load

Wood Design								
Species	DF-L							
Grade	No. 2							
Width	3.00 in							
Depth	7.25 in							

Adjustment Factors								
cd	1.15							
CF	1.2							
Material Properties								
Fb	900 psi							
Fv	180 psi							
E	1,600,000 psi							
Emin	580,000 psi							

Calculated Prop.								
A	21.75 in^2							
	95.27 in ^4							
s	$26.28 \mathrm{in}^{\wedge} 3$							
RB	7.06							
Emin'	580,000 psi							
Fbe	13,981 psi							
Fb^{*}	1,242 psi							
cı	1							

Stress								
fb	736 psi							
Fb'	1,236 psi							
fb/Fb'	0.60							
fv	178 psi							
Fv'	207 psi							
fv/Fv'	0.86							
Max Ratio	0.86							
	Pass							
Deflection								
$\Delta \operatorname{Tr}^{2}$	0.01 in							
	L/2,521							
טu	0.01 in							
	L/2,891							
	Pass							

Beam Calculations

Trib	Additional Drift	Roof	Floor	Deck	Wall	Total Load	Total Load
	0.0	10	0	0	3.33		1,729.9 plf
Dead Load Live / Snow Load	$\overline{0}$	170.0	0.0	0.0	59.9	${ }_{\text {220, }}^{229.9 \mathrm{plf}}$	

Wood Design								
Species	LVL							
Grade	2.05							
Width	3.50 in							
Depth	9.50 in							

Material Properties								
Fv	285 psi							
E	2,000,000 psi							
Emin	1,016,535 psi							

Calculated Prop.								
A	33.25 in^2							
	250.07 in^4							
s	52.65 in^3							
RB	10.81							
Emin'	1,016,535 psi							
FbE	10,434 psi							
Fb^{*}	3,669 psi							
cL	1							

M\|	101,364 lb-							
v	5,406 lbs							

Stress								
fb	1,925 psi							
Fb'	3,575 psi							
fb/Fb'	0.54							
fv	244 psi							
Fv'	328 psi							
fv/Fv'	0.74							
Max Ratio	0.74							
	Pass							
Deflection								
$\Delta \mathrm{T}^{\text {L }}$	0.12 in							
	L/632							
טu	0.10 in							
	L/728							
	Pass							

Beam Calculations

Trib	Additional Drift	Roof	Floor	Deck	Wall	Total Load	Total Load
	0.0	3	0	0	3.33		560.9 plf
Dead Load Live / Snow Load	0	51.0	0.0 0.0	0.0	59.9	110.9 plf	

Wood Design								
Species	DF-L	DF-L	LVL					
Grade	No. 2	No. 2	$2.0 E$					
Width	4.50 in	4.50 in	3.50 in					
Depth	11.25 in	7.25 in	11.88 in					

Reaction								
Dead Load	527 lbs	347 lbs	666 lbs					
Live Load	2,138 lbs	1,406 lbs	2,700 lbs					

Adjustment Factors

| | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cd | 1.15 | 1.15 | 1.15 | | | |
| CF | 1 | 1.2 | 1 | | | |

Material Properties

Fb	900 psi	900 psi	2,900 psi					
Fv	180 psi	180 psi	285 psi					
E	1,600,000 psi	1,600,000 psi	2,000,000 psi					
Emin	580,000 psi	580,000 psi	1,016,535 psi					

Calculated Prop.								
A	50.63 in ^2	32.63 in^2	41.56 in^2					
1	$533.94 \mathrm{in}^{\wedge} 4$	$142.90 \mathrm{in}^{\wedge} 4$	$488.41 \mathrm{in}^{\wedge} 4$					
S	94.92 in^3	39.42 in^3	82.26 in^3					
RB	11.04	7.18	16.19					
Emin'	580,000 psi	580,000 psi	1,016,535 psi					
FbE	5,706 psi	13,500 psi	4,655 psi					
Fb*	1,035 psi	1,242 psi	3,335 psi					
CL	1	1	1					

| Shear and Moment | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | M | $75,937 \mathrm{lb}-\mathrm{in}$ | $32,868 \mathrm{lb}-\mathrm{in}$ | $121,163 \mathrm{lb}-\mathrm{in}$ | | |
| | $2,664 \mathrm{lbs}$ | $1,753 \mathrm{lbs}$ | $3,366 \mathrm{lbs}$ | | | |

Stress								
fb	800 psi	834 psi	1,473 psi					
Fb^{\prime}	1,024 psi	1,236 psi	3,046 psi					
fb/Fb'	0.78	0.67	0.48					
fv	79 psi	81 psi	121 psi					
Fv'	207 psi	207 psi	328 psi					
fv/Fv'	0.38	0.39	0.37					
Max Ratio	0.78	0.67	0.48					
	Pass	Pass	Pass					
Deflection								
$\Delta \mathrm{L}$	0.12 in	0.08 in	0.27 in					
	L/947	L/890	L/537					
จu	0.10 in	0.07 in	0.21 in					
	L/1,181	L/1,110	L/670					
	Pass	Pass	Pass					

Beam Calculations

	Additional Drift	Roof	Floor	Deck	Wall	Total Load

Wood Design								
Species	DF-L							
Grade	No. 2							
Width	4.50 in							
Depth	7.25 in							

Adjustment Factors								
cd	1.15							
CF	1.2							
Material Properties								
Fb	900 psi							
Fv	180 psi							
E	1,600,000 psi							
Emin	580,000 psi							

Calculated Prop.								
A	32.63 in^2							
	142.90 in^4							
s	$39.42 \mathrm{in}^{\wedge} 3$							
RB	4.70							
Emin'	580,000 psi							
Fbe	31,456 psi							
Fb^{*}	1,242 psi							
cı	1							

M\|	$32,470 \mathrm{lb}$-in							
v	$4,329 \mathrm{lbs}$							

Stress								
fb	824 psi							
Fb'	1,239 psi							
fb/Fb'	0.66							
fv	199 psi							
Fv'	207 psi							
fv/Fv'	0.96							
Max Ratio	0.96							
	Pass							
Deflection								
ΔT_{L}	0.01 in							
	L/2,253							
هu	0.01 in							
	L/2,580							
	Pass							

Beam Calculations

Trib	Additional Drift	Roof	Floor	Deck	Wall	Total Load	Total Load
	0.0	22.5	0	0	5.33		3,853.4 plf
Dead Load	-	382.5	0.0	0.0	95.9	478.4 plf	
Live / Snow Load	0	3375.0	0.0	0.0	-	3,375.0 plf	

Description:	12.8 ft Opening	3.0ft Opening						
Header Callout	$\begin{gathered} 5.25 \times 24 \\ \text { DF/DF } 24 F-\mathrm{V} 4 \end{gathered}$	(3)9-1/2" $\text { LVL } 2.0 \mathrm{E}$						
Trimmers	(5) 2×6 DF-L No. 2	(2) 2×6 DF-L No. 2						
King Studs	$\begin{aligned} & \begin{array}{c} (2) \\ \text { DFF-LNo. } 2 \times 6 \end{array} \end{aligned}$	(1) 2×6 DF-L No. 2						

Wood Design								
Species	DF/DF	LVL						
Grade	24F-V4	2.05						
Width	5.25 in	5.25 in						
Depth	24.00 in	9.50 in						

Adjustment Factors								
Cd	1.15	1.15						
	CF	1	1.1					

Material Properties								
${ }^{\text {Fb }}$	2,400 psi	2,900 psi						
Fv	265 psi	285 psi						
E	1,850,000 psi	2,000,000 psi						
Emin	950,000 psi	1,016,535 psi						

Calculated Prop.							
A	126.00 in^2	49.88 in 2					
	6,048.00 in^4	$375.10 \mathrm{in}^{\wedge} 4$					
s	504.00 in^3	78.95 in ^3					
RB	16.57	5.06					
Emin'	950,000 psi	1,016,535 psi					
Fbe	4,154 psi	47,723 psi					
Fb^{*}	2,760 psi	3,669 psi					
cı	1	1					

Stress					-	-		
fb	1,864 psi	659 psi						
Fb'	2,556 psi	3,653 psi						
fb/Fb'	0.73	0.18						
fv	292 psi	174 psi						
Fv'	305 psi	328 psi						
fv/Fv'	0.96	0.53						
Max Ratio	0.96	0.53						
	Pass	Pass						
Deflection								
Δ тL	0.20 in	0.01 in						
	L/747	L/3,846						
aut	0.18 in	0.01 in						
	L/853	L/4,391						
	Pass	Pass						

Beam Calculations

	Additional Drift	Roof	Floor	Deck	Wall	Total Load

Wood Design								
Species	DF-L							
Grade	No. 2							
Width	3.00 in							
Depth	9.25 in							

Adjustment Factors								
cd	1.15							
CF	1.1							
Material Properties								
Fb	900 psi							
Fv	180 psi							
E	1,600,000 psi							
Emin	580,000 psi							

Calculated Prop.								
A	27.75 in^2							
	197.86 in^4							
s	$42.78 \mathrm{in}^{\wedge} 3$							
RB	8.73							
Emin'	580,000 psi							
Fbe	9,131 psi							
Fb^{*}	1,139 psi							
cı	,							

Shear and Moment	30,604 lb-in							
v	3,400 lbs							

Stress								
fb	715 psi							
Fb'	1,131 psi							
fb/Fb'	0.63							
fv	184 psi							
Fv'	207 psi							
fv/Fv'	0.89							
Max Ratio	0.89							
	Pass							
Deflection								
Δ TL	0.01 in							
	L/2,759							
טu	0.01 in							
	L/3,207							
	Pass							

Beam Calculations

\qquad Additional Drift Roof Floor Deck Wall Total Load 0.0 16.665 0 0 5.33 \quad Total Load

Wood Design								
Species	LVL	DF-L	LVL	DF-L	DF/DF			
Grade	2.0 E	No. 2	$2.0 E$	No. 2	24F-V4			
Width	3.50 in	3.00 in	3.50 in	3.00 in	5.25 in			
Depth	14.00 in	7.25 in	11.88 in	11.25 in	13.50 in			

Load							
Iu	6.5 ft	2.0 ft	6.3 ft	3.0 ft	10.0 ft		
le	13.4 ft	4.1 ft	12.9 ft	6.2 ft	19.7 ft		

Adjustment Factors								
Cd	1.15	1.15	1.15	1.15	1.15			
CF	1	1.2	1	1	1			
Material Properties								
Fb	2,900 psi	900 psi	2,900 psi	900 psi	2,400 psi			
Fv	285 psi	180 psi	285 psi	180 psi	265 psi			
E	2,000,000 psi	1,600,000 psi	2,000,000 psi	1,600,000 psi	1,850,000 psi			
Emin	1,016,535 psi	580,000 psi	1,016,535 psi	580,000 psi	950,000 psi			

Calculated Prop.								
A	$49.00 \mathrm{in}^{\wedge} 2$	$21.75 \mathrm{in}^{\wedge} 2$	41.56 in^2	$33.75 \mathrm{in}^{\wedge} 2$	70.88 in^2			
	$800.33 \mathrm{in}^{\wedge} 4$	$95.27 \mathrm{in}^{\wedge} 4$	$488.41 \mathrm{in}^{\wedge} 4$	355.96 in^4	1,076.41 in^4			
S	114.33 in^3	$26.28 \mathrm{in}^{\wedge} 3$	$82.26 \mathrm{in}^{\wedge} 3$	$63.28 \mathrm{in}^{\wedge} 3$	$159.47 \mathrm{in}^{\wedge} 3$			
RB	13.55	6.31	12.24	9.63	10.75			
Emin'	1,016,535 psi	580,000 psi	1,016,535 psi	580,000 psi	950,000 psi			
FbE	6,643 psi	17,476 psi	8,145 psi	7,508 psi	9,858 psi			
Fb*	3,335 psi	1,242 psi	3,335 psi	1,035 psi	2,760 psi			
CL	1	1	1	1	1			

Shear and Moment								
	M	$182,456 \mathrm{lb}-\mathrm{in}$	$17,274 \mathrm{lb}-\mathrm{in}$	$168,691 \mathrm{lb}-\mathrm{in}$	$38,866 \mathrm{lb}-\mathrm{in}$	$431,849 \mathrm{lb}-\mathrm{in}$		
	$9,357 \mathrm{lbs}$	$2,879 \mathrm{lbs}$	$8,997 \mathrm{lbs}$	$4,318 \mathrm{lbs}$	$14,395 \mathrm{lbs}$			

Stress								
fb	1,596 psi	657 psi	2,051 psi	614 psi	2,708 psi			
Fb^{\prime}	3,188 psi	1,237 psi	3,229 psi	1,027 psi	2,709 psi			
$\mathrm{fb} / \mathrm{Fb}^{\prime}$	0.50	0.53	0.64	0.60	1.00			
fv	286 psi	199 psi	325 psi	192 psi	305 psi			
Fv'	328 psi	207 psi	328 psi	207 psi	305 psi			
fv/Fv'	0.87	0.96	0.99	0.93	1.00			
Max Ratio	0.87	0.96	0.99	0.93	1.00			
	Pass	Pass	Pass	Pass	Pass			
Deflection								
$\Delta \mathrm{t}$	0.07 in	0.01 in	0.10 in	0.01 in	0.33 in			
	L/1,080	L/3,530	L/741	L/3,908	L/369			
$\Delta \mathrm{LL}$	0.06 in	0.01 in	0.09 in	0.01 in	0.28 in			
	L/1,244	L/4,065	L/854	L/4,500	L/425			
	Pass	Pass	Pass	Pass	Pass			

Beam Calculations

Trib	Additional Drift	Roof	Floor	Deck	Wall	Total Load	Total Load
	0.0	21.5	0	0	3.33		3,650.4 plf
Dead Load Live / Snow Load	$\overline{0}$	365.5	0.0	0.0	59.9	${ }_{\text {32 }}$ 425.4 plf	

Description:	9.5 ft Opening							
	5.25×16.5	-				-		
Header Callout	DF/DF 24F - V4							
Trimm	(4) 2×6							
	DF-L No. 2							
King Studs	(1) 2×6							

Wood Design								
Species	DF/DF							
Grade	24F-V4							
Width	5.25 in							
Depth	16.50 in							

Reaction								
Dead Load	2,021 lbs							
Live Load	15,319 lbs							

Adjustment Factors								
cd	1.15							
CF	1							
Material Properties								
Fb	2,400 psi							
Fv	265 psi							
E	1,850,000 psi							
Emin	950,000 psi							

M	494,178 lb-in							
v	17,340 lbs							

Stress								
fb	2,074 psi							
Fb'	2,693 psi							
fb/Fb'	0.77							
fv	300 psi							
Fv'	305 psi							
fv/Fv'	0.99							
Max Ratio	0.99							
	Pass							
Deflection								
Δ TL	0.18 in							
	L/620							
هu	0.16 in							
	L/701							
	Pass							

Beam Calculations

	Additional Drift	Roof	Floor	Deck	Wall	Total Load

Wood Design								
Species	DF-L							
Grade	No. 2							
Width	3.00 in							
Depth	5.50 in							

Adjustment Factors								
cd	1.15							
CF	1.3							
Material Properties								
Fb	900 psi							
Fv	180 psi							
E	1,600,000 psi							
Emin	580,000 psi							

Calculated Prop.								
A	16.50 in^2							
	41.59 in^4							
s	15.13 in^3							
RB	5.50							
Emin'	580,000 psi							
Fbe	23,036 psi							
Fb^{*}	1,346 psi							
cı	1							

M\|	10,545 Ib-in							
v	1,757 lbs							

Stress								
fb	697 psi							
Fb'	1,341 psi							
fb/Fb'	0.52							
fv	160 psi							
Fv'	207 psi							
fv/Fv'	0.77							
Max Ratio	0.77							
	Pass							
Deflection								
$\Delta \operatorname{Tr}^{2}$	0.01 in							
	L/2,524							
טu	0.01 in							
	L/2,910							
	Pass							

Beam Calculations

Trib	Additional Drift	Roof	Floor	Deck	Wall	Total Load	Total Load
	0.0	12.75	0	0	3.33		2,189.2 plf
Dead Load Live / Snow Load	0	216.8	0.0	0.0	59.9	$\frac{276.7 \mathrm{plf}}{1,912.5 \mathrm{plf}}$	

Description:	2.0 ft Opening	4.5 ft Opening						
	(2)2x6	(2)9-1/2"						
Header Callout	DF-L No. 2	LVL 2.0E						
Trim	(1) 2×6	(2) 2×6						
	DF-L No. 2	DF-L No. 2						
King Studs	(1) 2×6 DF-L No. 2	(1) 2×6 DF-L No. 2						

Wood Design								
Species	DF-L	LVL						
Grade	No. 2	$2.0 E$						
Width	3.00 in	3.50 in						
Depth	5.50 in	9.50 in						

Reaction								
Dead Load	277 lbs	623 lbs						
Live Load	1,913 lbs	4,303 lbs						

 10 2.0 ft 4.5 ft le 4.1 ft 9.3 ft								

Adjustment Factors

| Cd | 1.15 | 1.15 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CF | 1.3 | 1.1 | | | | |

Material Properties

| Fb | 900 psi | $2,900 \mathrm{psi}$ | | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fv | 180 psi | 285 psi | | | | |
| E | $1,600,000 \mathrm{psi}$ | $2,000,000 \mathrm{psi}$ | | | | |
| | $580,000 \mathrm{psi}$ | $1,016,535 \mathrm{psi}$ | | | | |

Calculated Prop.								
A	$16.50 \mathrm{in}^{\wedge} 2$	$33.25 \mathrm{in}^{\wedge} 2$						
1	$41.59 \mathrm{in}^{\wedge} 4$	250.07 in ^4						
S	15.13 in^3	$52.65 \mathrm{in}^{\wedge} 3$						
RB	5.50	9.29						
Emin'	580,000 psi	1,016,535 psi						
FbE	23,036 psi	14,140 psi						
Fb*	1,346 psi	3,669 psi						
CL	1	1						

| Shear and Moment | | | | | | |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M | $13,135 \mathrm{lb}-\mathrm{in}$ | $66,497 \mathrm{lb}-\mathrm{in}$ | | | | |
| | $2,189 \mathrm{lbs}$ | $4,926 \mathrm{lbs}$ | | | | |

Stress								
fb	868 psi	1,263 psi						
Fb^{\prime}	1,341 psi	3,607 psi						
fb/Fb'	0.65	0.35						
fv	199 psi	222 psi						
Fv'	207 psi	328 psi						
fv/Fv'	0.96	0.68						
Max Ratio	0.96	0.68						
	Pass	Pass						
Deflection								
Δ tr	0.01 in	0.04 in						
	L/2,027	L/1,337						
هu	0.01 in	0.04 in						
	L/2,320	L/1,531						
	Pass	Pass						

Beam Calculations

Trib	Additional Drift	Roof	Floor	Deck	Wall	Total Load	Total Load
	0.0	2	0	0	3.33		393.9 plf
Dead Load	-	34.0	0.0	0.0	59.9	93.9 plf	
Live / Snow Load	0	300.0	0.0	0.0	\cdots	300.0 plf	

Wood Design								
Species	DF-L							
Grade	No. 2							
Width	3.00 in							
Depth	9.25 in							

Adjustment Factors								
cd	1.15							
CF	1.1							
Material Properties								
Fb	900 psi							
Fv	180 psi							
E	1,600,000 psi							
Emin	580,000 psi							

Calculated Prop.								
A	27.75 in^2							
	197.86 in^4							
s	$42.78 \mathrm{in}^{\wedge} 3$							
RB	13.76							
Emin'	580,000 psi							
Fbe	3,676 psi							
Fb^{*}	1,139 psi							
cı	1							

M\|	$37,818 \mathrm{lb}$-in							
	1,576 lbs							

Stress								
fb	884 psi							
Fb'	1,114 psi							
fb/Fb'	0.79							
fv	85 psi							
Fv'	207 psi							
fv/Fv'	0.41							
Max Ratio	0.79							
	Pass							
Deflection								
Δ TL	0.11 in							
	L/837							
טu	0.09 in							
	L/1,099							
	Pass							

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Beam

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.08.30
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: STEEL HDR

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : IBC 2018

Material Properties

Analysis Method Allowable Strength Design	Fy: Steel Yield:	36.0 ksi
Beam Bracing:	Beam is Fully Braced against lateral-torsional buckling	E: Modulus:
Bending Axis:	Major Axis Bending	

Applied Loads

 Service loads entered. Load Factors will be applied for calculations.Beam self weight calculated and added to loading

$$
\text { Uniform Load: } \mathrm{D}=0.0170, \mathrm{~S}=0.150 \mathrm{ksf} \text {, Tributary Width }=2.0 \mathrm{ft}
$$

Point Load: D $=1.859, \mathrm{~S}=14.052 \mathrm{k} @ 8.0 \mathrm{ft}$

DESIGN SUMMARY				Design OK
Maximum Bending Stress Ratio =	0.972: 1	Maximum Shear Stress Ratio = Section used for this span		0.151: 1
Section used for this span	MC12x35			MC12x35
Ma : Applied	$75.452 \mathrm{k}-\mathrm{ft}$		Va: Applied	10.908 k
Mn / Omega : Allowable	$77.605 \mathrm{k}-\mathrm{ft}$		Vn/Omega : Allowable	72.172 k
Load Combination	+D+S		Combination on of maximum on span	$\begin{aligned} & +\mathrm{D}+\mathrm{S} \\ & 0.000 \mathrm{ft} \end{aligned}$
Span \# where maximum occurs	Span \# 1	Spa	\# where maximum occurs	Span \# 1
Maximum Deflection				
Max Downward Transient Deflection	0.403 in Ratio $=$	476 >=360	Span: 1 : S Only	
Max Upward Transient Deflection	0 in Ratio $=$	$0<360$	n/a	
Max Downward Total Deflection	0.463 in Ratio $=$	$414>=240$.	Span: 1 : +D+S	
Max Upward Total Deflection	0 in Ratio $=$	$0<240.0$		

Maximum Forces \& Stresses for Load Combinations

Project Title:
Engineer:
Project ID:
Project Descr:

| Steel Beam | Project File: 05 Beams.ec6 |
| :--- | :---: | :--- |

LIC\# : KW-06013353, Build:20.23.08.30
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: STEEL HDR

Vertical Reactions	Support notation : Far left is \#	Values in KIPS
Load Combination	Support 1	Support 2
$+D+0.750$ S	8.551	8.551
+0.60 D	0.889	0.889
S Only	9.426	9.426

Project Title:
Engineer:
Project ID:
Project Descr:

Steel Beam

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.08.30
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: STEEL HDR WIND

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : IBC 2018

Material Properties

Analysis Method Allowable Strength Design	Fy: Steel Yield :	36.0 ksi
Beam Bracing : Completely Unbraced	E: Modulus :	$29,000.0 \mathrm{ksi}$
Bending Axis : Minor Axis Bending		

Applied Loads Service loads entered. Load Factors will be applied for calculations.
Beam self weight NOT internally calculated and added
Uniform Load : W = 0.02514 ksf , Tributary Width $=10.0 \mathrm{ft}$

DESIGN SUMMARY				Design OK
Maximum Bending Stress Ratio =	0.362: 1	Maximum Shear Stress Ratio = Section used for this span		0.018 : 1
Section used for this span	MC12x35			MC12x35
Ma : Applied	4.827 k -ft		Va: Applied	1.207 k
Mn / Omega : Allowable	13.337 k-ft		Vn/Omega : Allowable	68.266 k
Load Combination	+0.60W	Load	Combination	+0.60W
			ion of maximum on span	0.000 ft
Span \# where maximum occurs	Span \# 1	Span	\# where maximum occurs	Span \# 1
Maximum Deflection				
Max Downward Transient Deflection	1.016 in Ratio $=$	188 >=180.	Span: 1 : W Only	
Max Upward Transient Deflection	0 in Ratio =	$0<180.0$	n/a	
Max Downward Total Deflection	0.611 in Ratio $=$	$314>=180$.	Span: 1 : +0.60W	
Max Upward Total Deflection	0 in Ratio =	$0<180.0$		

Maximum Forces \& Stresses for Load Combinations

Load Combination Segment Length	Span \#	Max Stress Ratios		Summary of Moment Values						Summary of Shear Values		
		M	V	Mmax +	Mmax -	Ma Max	Mny Mny	Omega Cb	Rm	Va Max	VnyVny	mega
Dsgn. L $=16.00 \mathrm{ft}$	1		0.000				22.27	13.341 .00	1.00	-0.00	114.00	68.27
+0.60W												
Dsgn. L = 16.00 ft	1	0.362	0.018	4.83		4.83	22.27	13.341 .14	1.00	1.21	114.00	68.27
+0.450W												
Dsgn. L = 16.00 ft	1	0.271	0.013	3.62		3.62	22.27	13.341 .14	1.00	0.91	114.00	68.27

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl Location in Span
W Only	1	1.0192	8.046	0.0000	
Vertical Reactions			Support notation : Far left is \#		
Load Combination		Support 1	Support 2		
Max Upward from all Load Conditions	2.011	2.011			
Max Upward from Load Combinations	1.207	1.207			
Max Upward from Load Cases	2.011	2.011			
+0.60W	1.207	1.207			
+0.450W	0.905	0.905			
W Only	2.011	2.011			
01/23/24			Page 84 of 178		

Project Title:
Engineer:
Project ID:
Project Descr:

Concrete Beam

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.08.30
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: LINTEL

CODE REFERENCES

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : IBC 2018

General Information

Cross Section \& Reinforcing Details

Rectangular Section, Width $=8.0$ in, Height $=12.0$ in
Span \#1 Reinforcing....
2-\#4 at 3.0 in from Bottom, from 0.0 to 3.0 ft in this span

Beam self weight calculated and added to loads
Load for Span Number 1
Uniform Load: $D=0.0120, L=0.040 \mathrm{ksf}$, Tributary Width $=8.0 \mathrm{ft}$

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio = 0.056					
Section used for this span	Typical Section				
Mu: Applied	0.8361 k-ft				
Mn * Phi : Allowable	$14.929 \mathrm{k}-\mathrm{ft}$				
Location of maximum on span	1.503 ft				
Span \# where maximum occurs	Span \# 1				
Maximum Deflection					
Max Downward Transient Deflection	0.000 in	Ratio $=$	$0<360.0$	L Only	
Max Upward Transient Deflection	0.000 in	Ratio $=$	$0<360.0$	L Only	
Max Downward Total Deflection	0.000 in	Ratio =	$0<180.0$	Span: 1 : +D+L	
Max Upward Total Deflection	0.000 in	Ratio $=$	$0<180.0$	Span: 1 : +D+L	
Vertical Reactions	Support notation : Far left is \#1				
Load Combination	Support 1 Support 2				
Max Upward from all Load Conditions		0.769	0.769		
Max Upward from Load Combinations		0.769	0.769		
Max Upward from Load Cases		0.480	0.480		
D Only		0.289	0.289		
+D+L 01/23/24		0.769	0.769		Page 85 of 178
+D+0.750L		0.649	0.649		
+0.60D		0.173	0.173		

Project Title:
Engineer:
Project ID:
Project Descr:

| Concrete Beam | Project File: 05 Beams.ec6 |
| :--- | ---: | :--- |
| LIC\# : KW-06013353, Build:20.23.08.30 SNAKE RIVER ENGINEERING | (c) ENERCALC INC 1983-2023 |

DESCRIPTION: LINTEL

Vertical Reactions Support notation : Far left is \#1

Load Combination	Support 1 Support 2
Only	$0.480 \quad 0.480$

Shear Stirrup Requirements

Entire Beam Span Length : Vu < Phi*Vc / 2, Req'd Vs = Not Reqd per 9.6.3.1, Stirrups are not required.

Detailed Shear Information

	Span Distance 'd'			Actual	(k) Design	$\begin{gathered} \mathrm{Mu} \\ (\mathrm{k}-\mathrm{ft}) \end{gathered}$	$\mathrm{d}^{*} \mathrm{Vu} / \mathrm{Mu}$	Phi*Vc (k)	Comment	Phi*Vs (k)	Phi*Vn Spacing (in) (k) Req'd	
Load Combination	Number	(ft)	(in)									
+1.20D+1.60L	1	0.00	9.00	1.11	1.11	0.00	1.00	5.88	Vu < Phi*Vc /)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	0.03	9.00	1.09	1.09	0.04	1.00	5.88	Vu < Phi*Vc /)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	0.07	9.00	1.07	1.07	0.07	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	0.10	9.00	1.04	1.04	0.11	1.00	5.88	Vu < Phi*Vc /)t Reqd peı	5.9	0.0
+1.20D+1.60L	1	0.13	9.00	1.02	1.02	0.14	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	0.16	9.00	0.99	0.99	0.17	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	0.20	9.00	0.97	0.97	0.20	1.00	5.88	$\mathrm{Vu}<\mathrm{Phi}^{\mathrm{V}} \mathrm{Vc} / 2$)t Reqd pe	5.9	0.0
+1.20D+1.60L	1	0.23	9.00	0.94	0.94	0.24	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	0.26	9.00	0.92	0.92	0.27	1.00	5.88	$\mathrm{Vu}<\mathrm{Phi}^{*} \mathrm{Vc} / 2$)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	0.30	9.00	0.90	0.90	0.30	1.00	5.88	Vu < Phi*Vc /)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	0.33	9.00	0.87	0.87	0.33	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	0.36	9.00	0.85	0.85	0.35	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	0.39	9.00	0.82	0.82	0.38	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	0.43	9.00	0.80	0.80	0.41	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	0.46	9.00	0.77	0.77	0.43	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	0.49	9.00	0.75	0.75	0.46	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	0.52	9.00	0.72	0.72	0.48	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	0.56	9.00	0.70	0.70	0.51	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	0.59	9.00	0.68	0.68	0.53	0.96	5.85	Vu < Phi*Vc / 2)t Reqd pel	5.8	0.0
+1.20D+1.60L	1	0.62	9.00	0.65	0.65	0.55	0.89	5.80	$\mathrm{Vu}<\mathrm{Phi}^{*} \mathrm{Vc} / 2$)t Reqd pel	5.8	0.0
+1.20D+1.60L	1	0.66	9.00	0.63	0.63	0.57	0.82	5.75	$\mathrm{Vu}<\mathrm{Phi}^{*} \mathrm{Vc} / 2$)t Reqd pel	5.7	0.0
+1.20D+1.60L	1	0.69	9.00	0.60	0.60	0.59	0.76	5.70	Vu < Phi*Vc / 2)t Reqd pel	5.7	0.0
+1.20D+1.60L	1	0.72	9.00	0.58	0.58	0.61	0.71	5.66	Vu < Phi*Vc / 2)t Reqd pel	5.7	0.0
+1.20D+1.60L	1	0.75	9.00	0.55	0.55	0.63	0.66	5.63	Vu < Phi*Vc / 2)t Reqd pel	5.6	0.0
+1.20D+1.60L	1	0.79	9.00	0.53	0.53	0.65	0.61	5.59	Vu < Phi*Vc / 2)t Reqd pel	5.6	0.0
+1.20D+1.60L	1	0.82	9.00	0.51	0.51	0.66	0.57	5.56	Vu < Phi*Vc / 2)t Reqd pel	5.6	0.0
+1.20D+1.60L	1	0.85	9.00	0.48	0.48	0.68	0.53	5.53	$\mathrm{Vu}<\mathrm{Phi}^{*} \mathrm{Vc} / 2$)t Reqd pel	5.5	0.0
+1.20D+1.60L	1	0.89	9.00	0.46	0.46	0.70	0.49	5.50	Vu < Phi*Vc / 2)t Reqd pel	5.5	0.0
+1.20D+1.60L	1	0.92	9.00	0.43	0.43	0.71	0.46	5.47	Vu < Phi*Vc / 2)t Reqd pei	5.5	0.0
+1.20D+1.60L	1	0.95	9.00	0.41	0.41	0.72	0.42	5.45	$\mathrm{Vu}<\mathrm{Phi}^{*} \mathrm{Vc} / 2$)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	0.98	9.00	0.38	0.38	0.74	0.39	5.42	Vu < Phi*Vc / 2)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	1.02	9.00	0.36	0.36	0.75	0.36	5.40	Vu < Phi*Vc / 2)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	1.05	9.00	0.34	0.34	0.76	0.33	5.40	$\mathrm{Vu}<\mathrm{Phi}^{*} \mathrm{Vc} / 2$)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	1.08	9.00	0.31	0.31	0.77	0.30	5.40	$\mathrm{Vu}<\mathrm{Phi}^{*} \mathrm{Vc} / 2$)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	1.11	9.00	0.29	0.29	0.78	0.27	5.40	$\mathrm{Vu}<\mathrm{Phi}^{*} \mathrm{Vc} / 2$)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	1.15	9.00	0.26	0.26	0.79	0.25	5.40	Vu < Phi*Vc / 2)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	1.18	9.00	0.24	0.24	0.80	0.22	5.40	Vu < Phi*Vc / 2)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	1.21	9.00	0.21	0.21	0.81	0.20	5.40	Vu < Phi*Vc / 2)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	1.25	9.00	0.19	0.19	0.81	0.17	5.40	Vu < Phi*Vc / 2)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	1.28	9.00	0.16	0.16	0.82	0.15	5.40	Vu < Phi*Vc / 2)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	1.31	9.00	0.14	0.14	0.82	0.13	5.40	$\mathrm{Vu}<\mathrm{Phi}^{*} \mathrm{Vc} / 2$)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	1.34	9.00	0.12	0.12	0.83	0.10	5.40	Vu < Phi*Vc / 2)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	1.38	9.00	0.09	0.09	0.83	0.08	5.40	Vu < Phi*Vc / 2)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	1.41	9.00	0.07	0.07	0.83	0.06	5.40	$\mathrm{Vu}<\mathrm{Phi}^{*} \mathrm{Vc} / 2$)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	1.44	9.00	0.04	0.04	0.83	0.04	5.40	$\mathrm{Vu}<\mathrm{Phi}^{*} \mathrm{Vc} / 2$)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	1.48	9.00	0.02	0.02	0.84	0.02	5.40	$\mathrm{Vu}<\mathrm{Phi}^{\mathrm{V}} \mathrm{Vc} / 2$)t Reqd pe	5.4	0.0
+1.20D+1.60L	1	1.51	9.00	-0.01	0.01	0.84	0.01	5.40	Vu < Phi*Vc / 2)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	1.54	9.00	-0.03	0.03	0.84	0.03	5.40	$\mathrm{Vu}<\mathrm{Phi}^{*} \mathrm{Vc} / 2$)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	1.57	9.00	-0.05	0.05	0.83	0.05	5.40	Vu < Phi*Vc / 2)t Reqd pel		178
+1.20D+ 9.6 (62 $3 / 24$	1	1.61	9.00	-0.08	0.08	0.83	0.07	5.40	Vu < Phi*Vc / 2)t Reqd Pag	ge 86.4f	1780.0
+1.20D+1.60L	1	1.64	9.00	-0.10	0.10	0.83	0.09	5.40	Vu < Phi*Vc / 2)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	1.67	9.00	-0.13	0.13	0.83	0.12	5.40	Vu < Phi*Vc / 2)t Reqd pel	5.4	0.0

Project Title:
Engineer:
Project ID:
Project Descr:

Concrete Beam	Project File: 05 Beams.ec6	
LIC\# : KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING	(c) ENERCALC INC 1983-2023

DESCRIPTION: LINTEL

Detailed Shear Information

	Span Distance 'd'			Vu Actual	(k) Design	$\begin{gathered} \mathrm{Mu} \\ (\mathrm{k}-\mathrm{ft}) \end{gathered}$	d*Vu/Mu	Phi*Vc (k)	Comment	Phi*Vn Spacing (in)	
Load Combination	Number	(ft)	(in)								
+1.20D+1.60L	1	1.70	9.00	-0.15	0.15	0.82	0.14	5.40	Vu < Phi*Vc / 2 t Reqd pel	5.4	0.0
+1.20D+1.60L	1	1.74	9.00	-0.18	0.18	0.82	0.16	5.40	$\mathrm{Vu}<$ Phi*Vc / 2)t Reqd peı	5.4	0.0
+1.20D+1.60L	1	1.77	9.00	-0.20	0.20	0.81	0.19	5.40	Vu < Phi*Vc / 2)t Reqd pei	5.4	0.0
+1.20D+1.60L	1	1.80	9.00	-0.23	0.23	0.80	0.21	5.40	Vu < Phi*Vc / 2)t Reqd pei	5.4	0.0
+1.20D+1.60L	1	1.84	9.00	-0.25	0.25	0.79	0.24	5.40	$\mathrm{Vu}<$ Phi*Vc / 2)t Reqd peı	5.4	0.0
+1.20D+1.60L	1	1.87	9.00	-0.27	0.27	0.79	0.26	5.40	Vu < Phi*Vc / 2)t Reqd pei	5.4	0.0
+1.20D+1.60L	1	1.90	9.00	-0.30	0.30	0.78	0.29	5.40	Vu < Phi*Vc / 2)t Reqd pei	5.4	0.0
+1.20D+1.60L	1	1.93	9.00	-0.32	0.32	0.77	0.32	5.40	$\mathrm{Vu}<$ Phi*Vc / 2)t Reqd peı	5.4	0.0
+1.20D+1.60L	1	1.97	9.00	-0.35	0.35	0.75	0.34	5.40	$\mathrm{Vu}<$ Phi*Vc / 2)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	2.00	9.00	-0.37	0.37	0.74	0.37	5.41	Vu < Phi*Vc / 2)t Reqd pei	5.4	0.0
+1.20D+1.60L	1	2.03	9.00	-0.40	0.40	0.73	0.41	5.43	$\mathrm{Vu}<$ Phi*Vc / 2)t Reqd pel	5.4	0.0
+1.20D+1.60L	1	2.07	9.00	-0.42	0.42	0.72	0.44	5.46	Vu < Phi*Vc / 2)t Reqd peı	5.5	0.0
+1.20D+1.60L	1	2.10	9.00	-0.44	0.44	0.70	0.47	5.49	Vu < Phi*Vc / 2)t Reqd pei	5.5	0.0
+1.20D+1.60L	1	2.13	9.00	-0.47	0.47	0.69	0.51	5.51	$\mathrm{Vu}<\mathrm{Phi*}^{*} \mathrm{Vc} / 2$ t Reqd pel	5.5	0.0
+1.20D+1.60L	1	2.16	9.00	-0.49	0.49	0.67	0.55	5.54	Vu < Phi*Vc / 2)t Reqd pei	5.5	0.0
+1.20D+1.60L	1	2.20	9.00	-0.52	0.52	0.66	0.59	5.57	$\mathrm{Vu}<\mathrm{Phi}^{*} \mathrm{Vc} / 2$)t Reqd pei	5.6	0.0
+1.20D+1.60L	1	2.23	9.00	-0.54	0.54	0.64	0.64	5.61	Vu < Phi*Vc / 2)t Reqd pel	5.6	0.0
+1.20D+1.60L	1	2.26	9.00	-0.57	0.57	0.62	0.69	5.64	Vu < Phi*Vc / 2)t Reqd pel	5.6	0.0
+1.20D+1.60L	1	2.30	9.00	-0.59	0.59	0.60	0.74	5.68	$\mathrm{Vu}<$ Phi*Vc / 2)t Reqd pel	5.7	0.0
+1.20D+1.60L	1	2.33	9.00	-0.62	0.62	0.58	0.79	5.73	Vu < Phi*Vc / 2)t Reqd pei	5.7	0.0
+1.20D+1.60L	1	2.36	9.00	-0.64	0.64	0.56	0.86	5.77	$\mathrm{Vu}<\mathrm{Phi}^{*} \mathrm{Vc} / 2$)t Reqd pei	5.8	0.0
+1.20D+1.60L	1	2.39	9.00	-0.66	0.66	0.54	0.92	5.82	Vu < Phi*Vc / 2)t Reqd pei	5.8	0.0
+1.20D+1.60L	1	2.43	9.00	-0.69	0.69	0.52	1.00	5.88	$\mathrm{Vu}<$ Phi*Vc / 2)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	2.46	9.00	-0.71	0.71	0.49	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pei	5.9	0.0
+1.20D+1.60L	1	2.49	9.00	-0.74	0.74	0.47	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	2.52	9.00	-0.76	0.76	0.45	1.00	5.88	$\mathrm{Vu}<$ Phi*Vc / 2)t Reqd pei	5.9	0.0
+1.20D+1.60L	1	2.56	9.00	-0.79	0.79	0.42	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pei	5.9	0.0
+1.20D+1.60L	1	2.59	9.00	-0.81	0.81	0.39	1.00	5.88	$\mathrm{Vu}<$ Phi*Vc / 2)t Reqd peı	5.9	0.0
+1.20D+1.60L	1	2.62	9.00	-0.83	0.83	0.37	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	2.66	9.00	-0.86	0.86	0.34	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pei	5.9	0.0
+1.20D+1.60L	1	2.69	9.00	-0.88	0.88	0.31	1.00	5.88	$\mathrm{Vu}<\mathrm{Phi*}^{*} \mathrm{Vc} / 2$)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	2.72	9.00	-0.91	0.91	0.28	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pei	5.9	0.0
+1.20D+1.60L	1	2.75	9.00	-0.93	0.93	0.25	1.00	5.88	Vu < Phi*Vc / 2)t Reqd peı	5.9	0.0
+1.20D+1.60L	1	2.79	9.00	-0.96	0.96	0.22	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	2.82	9.00	-0.98	0.98	0.19	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pei	5.9	0.0
+1.20D+1.60L	1	2.85	9.00	-1.01	1.01	0.16	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pei	5.9	0.0
+1.20D+1.60L	1	2.89	9.00	-1.03	1.03	0.12	1.00	5.88	Vu < Phi*Vc / 2)t Reqd pei	5.9	0.0
+1.20D+1.60L	1	2.92	9.00	-1.05	1.05	0.09	1.00	5.88	$\mathrm{Vu}<$ Phi*Vc / 2)t Reqd pei	5.9	0.0
+1.20D+1.60L	1	2.95	9.00	-1.08	1.08	0.05	1.00	5.88	$\mathrm{Vu}<$ Phi*Vc / 2)t Reqd pel	5.9	0.0
+1.20D+1.60L	1	2.98	9.00	-1.10	1.10	0.02	1.00	5.88	Vu < Phi*Vc / 2 tt Reqd pei	5.9	0.0

Maximum Forces \& Stresses for Load Combinations

Load Combination Segment	Span \#	Location (ft) along Beam	Bending Stress Results ($\mathrm{k}-\mathrm{ft}$)		
			Mu: Max	Phi*Mnx	Stress Ratio
MAXXimum BENDING Envelope					
Span \# 1	1	3.000	0.84	14.93	0.06
+1.40D					
Span \# 1	1	3.000	0.30	14.93	0.02
+1.20D+1.60L					
Span \# 1	1	3.000	0.84	14.93	0.06
$+1.20 \mathrm{D}+0.50 \mathrm{~L}$					
Span \# 1	1	3.000	0.44	14.93	0.03
+1.20D					
Span \# 1	1	3.000	0.26	14.93	0.02
+0.90D					
Span \# 1	1	3.000	0.20	14.93	0.01

WOOD TALL WALL \& KING STUD ALLOWABLE LOADS (plf):							
Load Duration Factor: 1.6 Max Vert. Load: 50 lbs				Max Deflection: L/180			
	Height						
King Stud	12'	14'	16'	18'	20'	22'	24'
(1) 2x4 Stud	12.8	NA	NA	NA	NA	NA	NA
(2) 2×4 Stud	25.6	NA	NA	NA	NA	NA	NA
(3) 2×4 Stud	38.4	NA	NA	NA	NA	NA	NA
(1) 2×6 DF \#2	57.0	35.8	24.1	16.9	NA	NA	NA
(2) 2×6 DF \#2	114.0	71.6	48.2	33.8	NA	NA	NA
(3) 2×6 DF \#2	171.0	107.4	72.3	50.7	NA	NA	NA
(1) 2x8 DF \#2	130.0	81.7	55.0	38.7	28.2	21.2	16.3
(2) 2×8 DF \#2	260.0	163.4	110.0	77.4	56.4	42.4	32.6
(3) 2x8 DF \#2	390.0	245.1	165.0	116.1	84.6	63.6	48.9
(1) 2×6 LSL	67.8	42.7	28.5	20.0	14.7	NA	NA
(2) 2x6 LSL	135.6	85.4	57.0	40.0	29.4	NA	NA
(3) 2×6 LSL	203.4	128.1	85.5	60.0	44.1	NA	NA
(1) 2x8 LSL	155.0	98.3	65.5	46.0	33.5	25.2	19.5
(2) 2x8 LSL	310.0	196.6	131.0	92.0	67.0	50.4	39.0
(3) 2x8 LSL	465.0	294.9	196.5	138.0	100.5	75.6	58.5

*NOTE 1: this table combined with trimmer table to determine combined stress on each common wall stud. *NOTE 2: allowable loads are interpolated at heights not in 2' increments.

WOOD TRIMMER ALLOWABLE LOADS (kips):

Load Duration Factor: 1.0 Eccentricity: 0 "

	Height						
Trimmer Type	8'	10^{\prime}	12'	14'	16^{\prime}	18'	20'
(1) 2×4 Stud	2.4	1.7	1.2	NA	NA	NA	NA
(2) 2×4 Stud	4.9	3.4	2.4	NA	NA	NA	NA
(3) 2×4 Stud	7.1	5.0	3.6	NA	NA	NA	NA
(1) 2×6 DF \#2	5.1	5.1	5.0	3.8	3.0	NA	NA
(2) 2×6 DF \#2	10.3	10.3	10.1	7.7	6.0	NA	NA
(3) 2×6 DF \#2	15.4	15.4	15.1	11.6	9.1	NA	NA
(1) 2×8 DF \#2	6.7	6.7	6.7	6.7	6.4	5.3	4.4
(2) 2×8 DF \#2	13.5	13.5	13.5	13.5	12.9	10.6	8.8
(3) 2×8 DF \#2	20.3	20.3	20.3	20.3	19.4	15.9	13.2

*NOTE 1: this table combined with king stud table to determine combined stress on each common wall stud.
*NOTE 2: allowable loads are interpolated at heights not in 2 ' increments.

UNBRACED WOOD COLUMN ALLOWABLE LOADS (kips)								
								Compression
	Unbraced Height							Perp. To
Column Type	$8{ }^{\prime}$	10^{\prime}	12'	14'	16'	18'	20^{\prime}	Grain
(2) 2×4 DF \#2	4.50	3.00	2.10	SR	SR	SR	SR	6.50
(3) 2×4 DF \#2	8.80	5.90	4.20	3.20	SR	SR	SR	9.80
4x4 DF \#2	7.00	4.60	3.30	2.40	SR	SR	SR	7.60
(2) 2x6 DF \#2	7.20	4.70	3.30	SR	SR	SR	SR	10.30
(3) 2x6 DF \#2	20.40	14.70	10.70	8.00	6.20	4.90	SR	15.40
6x6 DF \#2	18.00	15.70	13.00	10.50	8.50	6.90	5.70	18.90
6x8 DF \#2	24.50	21.40	17.80	14.30	11.60	9.40	7.80	25.70
6x10 DF \#2	31.40	27.10	22.50	18.20	14.70	12.00	9.90	32.60
8x8 DF \#2	36.60	34.60	31.90	28.50	24.90	21.30	18.20	35.20
8x10 DF \#2	46.30	43.90	40.40	36.20	31.50	27.00	23.10	44.50
8x12 DF \#2	56.20	53.10	49.00	43.80	38.10	32.70	28.00	53.40
10x10 DF \#2	60.50	58.80	56.50	53.40	49.60	45.20	40.50	56.40

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	
LIC\#: KW-06013353, Build:20.23.08.30	Project File: 05 Beams.ec6
DESCRIPTION: RB1 BRG	SNAKE RIVER ENGINEERING

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Column self weight included : 121.914 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $10.0 \mathrm{ft}, \mathrm{D}=1.822, \mathrm{~S}=14.471 \mathrm{k}$
DESIGN SUMMARY

Load Combination Results

Load Combination	$\mathrm{C}_{\text {D }}$	C_{P}	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
			Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.894	0.06138	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+S	1.150	0.856	0.4234	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750S	1.150	0.856	0.3301	PASS	0.0 ft	0.0	PASS	10.0 ft
+0.60D	1.600	0.783	0.02365	PASS	0.0 ft	0.0	PASS	10.0 ft

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	Project File: 05 Beams.ec6	
LIC\#: KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING	(c) ENERCALC INC 1983-2023

DESCRIPTION: RB1 BRG

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance
D Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+0.750S	0.0000 in	0.000 ft	0.000 in	0.000 ft
$+0.60 D$	0.0000 in	0.000 ft	0.000 in	0.000 ft
S Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
Sketches				

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	
LIC\#: KW-06013353, Build:20.23.08.30	Project File: 05 Beams.ec6
DESCRIPTION: RB1 BRG 2	SNAKE RIVER ENGINEERING

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Column self weight included : 71.523 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $10.0 \mathrm{ft}, \mathrm{D}=1.599, \mathrm{~S}=12.748 \mathrm{k}$
DESIGN SUMMARY

Load Combination Results

Load Combination	$\mathrm{C}_{\text {D }}$	C_{P}	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
			Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.792	0.09226	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+S	1.150	0.720	0.6852	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750S	1.150	0.720	0.5337	PASS	0.0 ft	0.0	PASS	10.0 ft
+0.60D	1.600	0.602	0.04096	PASS	0.0 ft	0.0	PASS	10.0 ft

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column		Project File: 05 Beams.ec6
LIC\#: KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING	(c) ENERCALC INC 1983-2023

DESCRIPTION: RB1 BRG 2

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance
D Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+0.750S	0.0000 in	0.000 ft	0.00 in	0.000 ft
+0.60 D	0.0000 in	0.000 ft	0.000 in	0.000 ft
S Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
Sketches				

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	
LIC\#: KW-06013353, Build:20.23.08.30	Project File: 05 Beams.ec6
DESCRIPTION: RB3 BRG 1 TOP PORTION	SNAKE RIVER ENGINEERING

DESCRIPTION: RB3 BRG 1 TOP PORTION

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Column self weight included : 234.725 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $12.0 \mathrm{ft}, \mathrm{D}=38.50 \mathrm{k}$
DESIGN SUMMARY

Load Combination Results

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.08.30 SNAKE RIVER ENGINEERING (c) ENERCALC INC 1983-2023

DESCRIPTION: RB3 BRG 1 TOP PORTION

Maximum Deflections for Load Combinations

	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance
Load Combination	0.0000 in	0.000 ft	0.000 in	0.000 ft
+0.60 D	0.0000 in	0.000 ft	0.000 in	0.000 ft

Sketches

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	
LIC\#: KW-06013353, Build:20.23.08.30	Project File: 05 Beams.ec6

DESCRIPTION: RB3 BRG 2
Code References
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Column self weight included : 107.284 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $12.0 \mathrm{ft}, \mathrm{D}=1.395, \mathrm{~S}=10.497 \mathrm{k}$
DESIGN SUMMARY

Load Combination Results

Load Combination	$\mathrm{C}_{\text {D }}$	C_{P}	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
			Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.651	0.08876	PASS	0.0 ft	0.0	PASS	12.0 ft
+D+S	1.150	0.559	0.6468	PASS	0.0 ft	0.0	PASS	12.0 ft
+D+0.750S	1.150	0.559	0.5054	PASS	0.0 ft	0.0	PASS	12.0 ft
+0.60D	1.600	0.436	0.04476	PASS	0.0 ft	0.0	PASS	12.0 ft

| Maximum Reactions | | | |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column		Project File: 05 Beams.ec6
LIC\#: KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING	(c) ENERCALC INC 1983-2023

DESCRIPTION: RB3 BRG 2

Maximum Reactions					Note: Only non-zero reactions are listed.			
Load Combination	X-X Axis Reaction @ Base @ Top	k	Y-Y Axis Reaction @ Base @ Top	Axial Reaction @ Base	My - End Mo @ Base	oments k-ft @ Top	Mx - End @ Base	Moments @ Top
+0.60D				0.901				
S Only				10.497				

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance
D Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
$+\mathrm{D}+\mathrm{S}$	0.0000 in	0.000 ft	0.000 in	0.000 ft
$+\mathrm{D}+0.750 \mathrm{~S}$	0.0000 in	0.000 ft	0.000 in	0.000 ft
+0.60 D	0.0000 in	0.000 ft	0.000 in	0.000 ft
S Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
Sketches				

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	Project File: 05 Beams.ec6
LIC\#: KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING

DESCRIPTION: RB4 BRG 1
Code References
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Column self weight included : 67.202 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $10.250 \mathrm{ft}, \mathrm{D}=2.611, \mathrm{~S}=16.452 \mathrm{k}$
DESIGN SUMMARY

Load Combination Results

Load Combination	$C_{\text {D }}$	C_{P}	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
			Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.888	0.1583	PASS	0.0 ft	0.0	PASS	10.250 ft
+D+S	1.150	0.848	0.9266	PASS	0.0 ft	0.0	PASS	10.250 ft
+D+0.750S	1.150	0.848	0.7274	PASS	0.0 ft	0.0	PASS	10.250 ft
+0.60D	1.600	0.771	0.06155	PASS	0.0 ft	0.0	PASS	10.250 ft

| Maximum Reactions | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	Project File: 05 Beams.ec6	
LIC\#: KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING	(c) ENERCALC INC 1983-2023

DESCRIPTION: RB4 BRG 1

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance
D Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+0.750S	0.0000 in	0.000 ft	0.00 in	0.000 ft
+0.60 D	0.0000 in	0.000 ft	0.000 in	0.000 ft
S Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
Sketches				

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	
LIC\#: KW-06013353, Build:20.23.08.30	Project File: 05 Beams.ec6
DESCRIPTION: RB6 BRG 1	SNAKE RIVER ENGINEERING

DESCRIPTION: RB6 BRG 1

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Column self weight included : 221.721 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $12.0 \mathrm{ft}, \mathrm{D}=4.420, \mathrm{~S}=32.0 \mathrm{k}$
DESIGN SUMMARY

Load Combination Results

Load Combination	$\mathrm{C}_{\text {D }}$	C_{P}	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
			Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.662	0.1344	PASS	0.0 ft	0.0	PASS	12.0 ft
+D+S	1.150	0.570	0.9645	PASS	0.0 ft	0.0	PASS	12.0 ft
+D+0.750S	1.150	0.570	0.7539	PASS	0.0 ft	0.0	PASS	12.0 ft
+0.60D	1.600	0.446	0.06730	PASS	0.0 ft	0.0	PASS	12.0 ft

Maximum Reactions					Note: Only non-zero reactions are listed.			
Load Combination	X-X Axis Reaction @ Base @ Top	k	Y-Y Axis Reaction @ Base @ Top	Axial Reaction @ Base	My - End M @ Base	ments k-ft @ Top	Mx - En @ Base	Moments @ Top
D Only				4.642				
+D+S				36.642				
+D+0.750S				28.642				
01/23/24					Page 105 of 178			

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	Project File: 05 Beams.ec6	
LIC\#: KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING	(c) ENERCALC INC 1983-2023

DESCRIPTION: RB6 BRG 1

Maximum Reactions					Note: Only non-zero reactions are listed.			
Load Combination	X-X Axis Reaction @ Base @ Top	k	Y-Y Axis Reaction @ Base @ Top	Axial Reaction @ Base	My - End @ Base	ments k-ft @ Top	Mx - End @ Base	Moments @ Top
$\begin{aligned} & +0.60 D \\ & \text { S Only } \end{aligned}$				$\begin{array}{r} 2.785 \\ 32.000 \end{array}$				

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	
Distance				
D Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+0.750S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+0.60 D	0.0000 in	0.000 ft	0.00 in	0.000 ft
S Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
Sketches				

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	
LIC\#: KW-06013353, Build:20.23.08.30	Project File: 05 Beams.ec6
DESCRIPTION: RB6 BRG 2	SNAKE RIVER ENGINEERING

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Column self weight included : 193.112 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $12.0 \mathrm{ft}, \mathrm{D}=3.564, \mathrm{~S}=26.190 \mathrm{k}$
DESIGN SUMMARY

Load Combination Results

Load Combination	$C_{\text {D }}$	C_{P}	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
			Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.656	0.1240	PASS	0.0 ft	0.0	PASS	12.0 ft
+D+S	1.150	0.564	0.9005	PASS	0.0 ft	0.0	PASS	12.0 ft
+D+0.750S	1.150	0.564	0.7037	PASS	0.0 ft	0.0	PASS	12.0 ft
+0.60D	1.600	0.440	0.06235	PASS	0.0 ft	0.0	PASS	12.0 ft

Maximum Reactions					Note: Only non-zero reactions are listed.		
Load Combination	X-X Axis Reaction @ Base @ Top	k	Y-Y Axis Reaction @ Base @ Top	Axial Reaction @ Base	My - End M @ Base	ments k-ft @ Top	Mx - End Moments @ Base @ Top
D Only				3.757			
+D+S				29.947			
+D+0.750S				23.400			
01/23/24					Page 107 of 178		

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column		Project File: 05 Beams.ec6
LIC\#: KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING	(c) ENERCALC INC 1983-2023

DESCRIPTION: RB6 BRG 2

Maximum Reactions					Note: Only non-zero reactions are listed.			
Load Combination	X-X Axis Reaction @ Base @ Top	k	Y-Y Axis Reaction @ Base @ Top	Axial Reaction @ Base	My - End M @ Base	ments k-ft @ Top	Mx - End @ Base	Moments @ Top
$\begin{aligned} & +0.60 D \\ & \text { S Only } \end{aligned}$				$\begin{array}{r} 2.254 \\ 26.190 \end{array}$				

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance
D Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+0.750S	0.0000 in	0.000 ft	0.00 in	0.000 ft
+0.60 D	0.0000 in	0.000 ft	0.000 in	0.000 ft
S Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
Sketches				

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	
LIC\#: KW-06013353, Build:20.23.08.30	Project File: 05 Beams.ec6
DESCRIPTION: RB8 BRG 1	SNAKE RIVER ENGINEERING

DESCRIPTION: RB8 BRG 1

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Column self weight included : 176.572 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $19.750 \mathrm{ft}, \mathrm{D}=0.840, \mathrm{~S}=7.0 \mathrm{k}$
DESIGN SUMMARY

Load Combination Results

Load Combination	C_{D}	C_{P}	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
			Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.304	0.1288	PASS	0.0 ft	0.0	PASS	19.750 ft
+D+S	1.150	0.243	0.9940	PASS	0.0 ft	0.0	PASS	19.750 ft
+D+0.750S	1.150	0.243	0.7770	PASS	0.0 ft	0.0	PASS	19.750 ft
+0.60D	1.600	0.178	0.07415	PASS	0.0 ft	0.0	PASS	19.750 ft

Maximum Reactions					Note: Only non-zero reactions are listed.			
Load Combination	X-X Axis Reaction @ Base @ Top	k	Y-Y Axis Reaction @ Base @ Top	Axial Reaction @ Base	My - End @ Base	ments k-ft @ Top	Mx - End @ Base	Moments @ Top
D Only				1.017				
+D+S				8.017				
+D+0.750S				6.267				
01/23/24						Page	109 of 1	

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column		Project File: 05 Beams.ec6
LIC\#: KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING	(c) ENERCALC INC 1983-2023

DESCRIPTION: RB8 BRG 1

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance
D Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D + S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+0.750S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+0.60 D	0.0000 in	0.000 ft	0.000 in	0.000 ft
S Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
Sketches				

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	Project File: 05 Beams.ec6
LIC\#: KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING

DESCRIPTION: RB7 BRG 1
Code References
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Column self weight included : 147.218 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $13.0 \mathrm{ft}, \mathrm{D}=1.954, \mathrm{~S}=12.866 \mathrm{k}$
DESIGN SUMMARY

Load Combination Results

Load Combination	C_{D}	C_{P}	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
			Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.591	0.1080	PASS	0.0 ft	0.0	PASS	13.0 ft
+D+S	1.150	0.498	0.7148	PASS	0.0 ft	0.0	PASS	13.0 ft
+D+0.750S	1.150	0.498	0.5612	PASS	0.0 ft	0.0	PASS	13.0 ft
+0.60D	1.600	0.382	0.05645	PASS	0.0 ft	0.0	PASS	13.0 ft

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column		Project File: 05 Beams.ec6
LIC\#: KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING	(c) ENERCALC INC 1983-2023

DESCRIPTION: RB7 BRG 1

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance
D Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+0.750S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+0.60D	0.0000 in	0.000 ft	0.000 in	0.000 ft
S Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
Sketches				

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	Project File: 05 Beams.ec6
LIC\#: KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING

DESCRIPTION: RB15 BRG 1

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Column self weight included : 225.297 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $14.0 \mathrm{ft}, \mathrm{D}=3.354, \mathrm{~S}=22.437 \mathrm{k}$
DESIGN SUMMARY

Load Combination Results

Load Combination	$C_{\text {D }}$	C_{P}	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
			Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.540	0.1437	PASS	0.0 ft	0.0	PASS	14.0 ft
+D+S	1.150	0.448	0.9837	PASS	0.0 ft	0.0	PASS	14.0 ft
+D+0.750S	1.150	0.448	0.7716	PASS	0.0 ft	0.0	PASS	14.0 ft
+0.60D	1.600	0.340	0.07704	PASS	0.0 ft	0.0	PASS	14.0 ft

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	Project File: 05 Beams.ec6	
LIC\#: KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING	(c) ENERCALC INC 1983-2023

DESCRIPTION: RB15 BRG 1

Maximum Reactions					Note: Only non-zero reactions are listed.			
Load Combination	X-X Axis Reaction @ Base @ Top	k	Y-Y Axis Reaction @ Base @ Top	Axial Reaction @ Base	My - End @ Base	ments k-ft @ Top	Mx - End @ Base	Moments @ Top
$\begin{aligned} & +0.60 D \\ & \text { S Only } \end{aligned}$				$\begin{array}{r} 2.148 \\ 22.437 \end{array}$				

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance
D Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+0.750S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+0.60D	0.0000 in	0.000 ft	0.000 in	0.000 ft
S Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
Sketches				

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	Project File: 05 Beams.ec6
LIC\#: KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING

DESCRIPTION: GRD1 BRG 2
Code References
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Column self weight included : 160.927 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $10.0 \mathrm{ft}, \mathrm{D}=4.841, \mathrm{~S}=33.018 \mathrm{k}$
DESIGN SUMMARY

Bending \& Shear Check Results			
PASS Max. Axial+Bending Stress Ratio	$=0.9230: 1$	Maximum SERVICE Lateral Load Reactions	
Load Combination	+D+S	Top along Y-Y $0.0 \mathrm{k} \quad$ Bottom along $\mathrm{Y}-\mathrm{Y}$	0.0 k
Governing NDS Forumla	Comp Only, fc/Fc'	Top along X-X $0.0 \mathrm{k} \quad$ Bottom along X-X	0.0 k
Location of max.above base	0.0 ft	Maximum SERVICE Load Lateral Deflections . . .	
At maximum location values are .		Along Y-Y 0.0 in at 0.0 ft above base	
Applied Axial Applied Mx	38.020 k $0.0 \mathrm{k}-\mathrm{ft}$	for load combination: n / a	
Applied My	$0.0 \mathrm{k}-\mathrm{ft}$	Along X-X $\quad 0.0$ in at 0.0 ft above base	
Fc: Allowable	554.80 psi	for load combination: n/a	
		Other Factors used to calculate allowable stresses ...	
PASS Maximum Shear Stress Ratio =	0.0 : 1	Bending Compression	Tension
Load Combination	+0.60D		
Location of max.above base	10.0 ft		
Applied Design Shear	0.0 psi		
Allowable Shear	272.0 psi		

Load Combination Results

Load Combination	C_{D}	C_{P}	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
			Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.774	0.1399	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+S	1.150	0.698	0.9230	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750S	1.150	0.698	0.7226	PASS	0.0 ft	0.0	PASS	10.0 ft
+0.60D	1.600	0.577	0.06338	PASS	0.0 ft	0.0	PASS	10.0 ft

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column		Project File: 05 Beams.ec6
LIC\#: KW-06013353, Build:20.23.08.30	(c) ENERCALC INC 1983-2023	

DESCRIPTION: GRD1 BRG 2

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance
D Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+0.750S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+0.60D	0.0000 in	0.000 ft	0.000 in	0.000 ft
S Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
Sketches				

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	Project File: 05 Beams.ec6	
LIC\#: KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING	(c) ENERCALC INC 1983-2023

DESCRIPTION: GRD1 BRG 1
Code References
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Column self weight included : 65.563 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $10.0 \mathrm{ft}, \mathrm{D}=1.927, \mathrm{~S}=13.479 \mathrm{k}$
DESIGN SUMMARY

Load Combination Results

Load Combination	C_{D}	C_{P}	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
			Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.771	0.1357	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+S	1.150	0.694	0.9158	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750S	1.150	0.694	0.7163	PASS	0.0 ft	0.0	PASS	10.0 ft
+0.60D	1.600	0.572	0.06171	PASS	0.0 ft	0.0	PASS	10.0 ft

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	
LIC\#: KW-06013353, Build:20.23.08.30	Project File: 05 Beams.ec6

DESCRIPTION: GRD1 BRG 1

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance
D Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+0.750S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+0.60D	0.0000 in	0.000 ft	0.000 in	0.000 ft
S Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
Sketches				

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	Project File: 05 Beams.ec6
LIC\#: KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING

DESCRIPTION: GRD2 BRG 1

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Column self weight included : 135.894 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $12.0 \mathrm{ft}, \mathrm{D}=3.105, \mathrm{~S}=17.50 \mathrm{k}$
DESIGN SUMMARY

Load Combination Results

Load Combination	$\mathrm{C}_{\text {D }}$	C_{P}	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
			Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.651	0.1512	PASS	0.0 ft	0.0	PASS	12.0 ft
+D+S	1.150	0.559	0.8826	PASS	0.0 ft	0.0	PASS	12.0 ft
+D+0.750S	1.150	0.559	0.6965	PASS	0.0 ft	0.0	PASS	12.0 ft
+0.60D	1.600	0.436	0.07624	PASS	0.0 ft	0.0	PASS	12.0 ft

Maximum Reactions					Note: Only non-zero reactions are listed.			
Load Combination	X-X Axis Reaction @ Base @ Top	k	Y-Y Axis Reaction @ Base @ Top	Axial Reaction @ Base	My - End @ Base	ments k-ft @ Top	Mx - End @ Base	Moments @ Top
D Only				3.241				
+D+S				20.741				
+D+0.750S				16.366				

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column		Project File: 05 Beams.ec6
LIC\#: KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING	(c) ENERCALC INC 1983-2023

DESCRIPTION: GRD2 BRG 1

Maximum Reactions					Note: Only non-zero reactions are listed.			
Load Combination	X-X Axis Reaction @ Base @ Top	k	Y-Y Axis Reaction @ Base @ Top	Axial Reaction @ Base	My - End M	oments k-ft @ Top	Mx - End	Moments
+0.60D				1.945				
s Only				17.500				

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	
Distance				
D Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+0.750S	0.0000 in	0.000 ft	0.00 in	0.000 ft
+0.60D	0.0000 in	0.000 ft	0.00 in	0.000 ft
S Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
Sketches				

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	Project File: 05 Beams.ec6
LIC\#: KW-06013353, Build:20.23.08.30	(c) ENERCALC INC 1983-2023

DESCRIPTION: GRD1 FB27 BRG
Code References
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018
General Information

Column self weight included : 80.463 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $9.0 \mathrm{ft}, \mathrm{D}=3.005, \mathrm{~S}=17.239 \mathrm{k}$
DESIGN SUMMARY

Load Combination Results

Load Combination	C_{D}	C_{P}	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
			Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.823	0.1442	PASS	0.0 ft	0.0	PASS	9.0 ft
+D+S	1.150	0.761	0.8045	PASS	0.0 ft	0.0	PASS	9.0 ft
+D+0.750S	1.150	0.761	0.6339	PASS	0.0 ft	0.0	PASS	9.0 ft
+0.60D	1.600	0.651	0.06152	PASS	0.0 ft	0.0	PASS	9.0 ft

Maximum Reactions					Note: Only non-zero reactions are listed.			
	X-X Axis Reaction	k	Y-Y Axis Reaction	Axial Reaction	My - End	ments k-ft	Mx - End	Moments
Load Combination	@ Base @ Top		@ Base @ Top	@ Base	@ Base	@ Top	@ Base	@ Top
D Only				3.085				
+D+S				20.324				
+D+0.750S				16.015				

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	
LIC\#: KW-06013353, Build:20.23.08.30	Project File: 05 Beams.ec6

LIC\#: KW-06013353, Build:20.23.08.30
DESCRIPTION: GRD1 FB27 BRG

Maximum Reactions					Note: Only non-zero reactions are listed.			
Load Combination	X-X Axis Reaction @ Base @ Top	k	Y-Y Axis Reaction @ Base @ Top	Axial Reaction @ Base	My - End M	oments k-ft @ Top	Mx - End	Moments
+0.60D				1.851				
s Only				17.239				

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance
D Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
$+\mathrm{D}+\mathrm{S}$	0.0000 in	0.000 ft	0.000 in	0.000 ft
$+\mathrm{D}+0.750 \mathrm{~S}$	0.0000 in	0.000 ft	0.000 in	0.000 ft
+0.60 D	0.0000 in	0.000 ft	0.000 in	0.000 ft
S Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
Sketches				

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	Project File: 05 Beams.ec6
LIC\#: KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING

DESCRIPTION: GRD2 BRG 2
Code References
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Column self weight included : 193.112 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $12.0 \mathrm{ft}, \mathrm{D}=5.0, \mathrm{~S}=26.30 \mathrm{k}$
DESIGN SUMMARY

Load Combination Results

Load Combination	C_{D}	C_{P}	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
			Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.656	0.1714	PASS	0.0 ft	0.0	PASS	12.0 ft
+D+S	1.150	0.564	0.9470	PASS	0.0 ft	0.0	PASS	12.0 ft
+D+0.750S	1.150	0.564	0.7493	PASS	0.0 ft	0.0	PASS	12.0 ft
+0.60D	1.600	0.440	0.08618	PASS	0.0 ft	0.0	PASS	12.0 ft

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column		Project File: 05 Beams.ec6
LIC\#: KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING	(c) ENERCALC INC 1983-2023

DESCRIPTION: GRD2 BRG 2

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance
D Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+0.750S	0.0000 in	0.000 ft	0.00 in	0.000 ft
+0.60 D	0.0000 in	0.000 ft	0.000 in	0.000 ft
S Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
Sketches				

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	
LIC\#: KW-06013353, Build:20.23.08.30	Project File: 05 Beams.ec6

DESCRIPTION: FB24 BRG
Code References
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Column self weight included : 80.463 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $9.0 \mathrm{ft}, \mathrm{D}=4.50, \mathrm{~L}=7.80, \mathrm{~S}=16.20 \mathrm{k}$
DESIGN SUMMARY

Load Combination Results

Load Combination	$\mathrm{C}_{\text {D }}$	C_{P}	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
			Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.823	0.2141	PASS	0.0 ft	0.0	PASS	9.0 ft
+D+L	1.000	0.799	0.5370	PASS	0.0 ft	0.0	PASS	9.0 ft
+D+S	1.150	0.761	0.8226	PASS	0.0 ft	0.0	PASS	9.0 ft
+D+0.750L	1.250	0.736	0.3928	PASS	0.0 ft	0.0	PASS	9.0 ft
+D+0.750L+0.750S	1.150	0.761	0.8938	PASS	0.0 ft	0.0	PASS	9.0 ft
+0.60D	1.600	0.651	0.09134	PASS	0.0 ft	0.0	PASS	9.0 ft

Maximum Reactions					Note: Only non-zero reactions are listed.			
Load Combination	X-X Axis Reaction @ Base @ Top	k	Y-Y Axis Reaction @ Base @ Top	Axial Reaction @ Base	My - End @ Base	ments k-ft @ Top	Mx - End @ Base	Moments @ Top
D Only				4.580				
01/23/24					Page 125 of 178			

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	Project File: 05 Beams.ec6	
LIC\#: KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING	(c) ENERCALC INC 1983-2023

DESCRIPTION: FB24 BRG

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection Distance	Max. Y-Y Deflection	Distance	
D Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
+ D+L	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+0.750L	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+0.750L+0.750S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+0.60D	0.0000 in	0.000 ft	0.000 in	0.000 ft
L Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
S Only	0.0000 in	0.000 ft	0.000 in	0.000 ft

Sketches

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column		Project File: 05 Beams.ec6
LIC\#:KW-06013353, Build:20.23.08.30	SNAKE RIVER ENGINEERING	(c) ENERCALC INC 1983-2023
DESCRIPTION: FBA FB16 RB1 BRG		

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Column self weight included : 80.463 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $9.0 \mathrm{ft}, \mathrm{D}=5.70, \mathrm{~S}=19.40 \mathrm{k}$
DESIGN SUMMARY

Load Combination Results

Load Combination	$C_{\text {D }}$	C_{P}	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
			Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.908	0.2228	PASS	0.0 ft	0.0	PASS	9.0 ft
+D+S	1.150	0.875	0.7876	PASS	0.0 ft	0.0	PASS	9.0 ft
+D+0.750S	1.150	0.875	0.6359	PASS	0.0 ft	0.0	PASS	9.0 ft
+0.60D	1.600	0.812	0.08407	PASS	0.0 ft	0.0	PASS	9.0 ft

Project Title:
Engineer:
Project ID:
Project Descr:

| Wood Column | Project File: 05 Beams.ec6 |
| :--- | ---: | :--- |
| LIC\#: KW-06013353, Build:20.23.08.30 | (c) ENERCALC INC 1983-2023 |

DESCRIPTION: FBA FB16 RB1 BRG

Maximum Reactions					Note: Only non-zero reactions are listed.			
Load Combination	X-X Axis Reaction @ Base @ Top	k	Y-Y Axis Reaction @ Base @ Top	Axial Reaction @ Base	My - End @ Base	ments k-ft @ Top	Mx - End @ Base	Moments @ Top
$\begin{aligned} & +0.60 D \\ & \text { S Only } \end{aligned}$				$\begin{array}{r} 3.468 \\ 19.400 \end{array}$				

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance
D Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+D+0.750S	0.0000 in	0.000 ft	0.000 in	0.000 ft
+0.60D	0.0000 in	0.000 ft	0.000 in	0.000 ft
S Only	0.0000 in	0.000 ft	0.000 in	0.000 ft
Sketches				

Project Title:
Engineer:
Project ID:
Project Descr:

Concrete Column

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.08.30
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: --None--

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018
General Information

Column self weight included : 9,300.0 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at 15.50 ft above base, $\mathrm{D}=62.80 \mathrm{k}$
DESIGN SUMMARY

Load Combination	+1.40 D	Maximum SERVICE Load Reactions			
Location of max.above base	15.396 ft	Top along Y-Y	0.0 k	Bottom along Y-Y	0.0 k
Maximum Stress Ratio	$\mathbf{0 . 1 2 3 : 1}$	Top along X-X	0.0 k	Bottom along X-X	0.0 k

Governing Load Combination Results

Governing Factored Load Combination	Moment		Dist. from $\underset{k}{\text { Axial Load }}$			Bending Analysis k-ft						Utilization	
	X-X	Y-Y	base	Pu	φ * Pn	δx	δx^{*} Mux	δ^{y}	δy^{*} Muy	Alpha (deg)	$\delta \mathrm{Mu}$	$\varphi \mathrm{Mn}$	Ratio
+1.40D	Actual	M2,min	15.40	100.94	823.07	1.000		1.000	11.10	90.000	11.10	90.61	0.123
+1.40D	M2,min	Actual	15.40	100.94	823.07	1.000	11.10	1.000		0.000	11.10	90.31	0.123
+1.20D	Actual	M2,min	15.40	86.52	823.07	1.000		1.000	9.52	90.000	9.52	90.61	0.105
01/23/24											Page 12	of 178	

Project Title:
Engineer:
Project ID:
Project Descr:

Concrete Column
Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.08.30
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: --None--
Governing Load Combination Results

Governing Factored Load Combination	Moment		Dist. from Axial Load				Bending Analysis k-ft				$\delta \mathrm{Mu}$	Utilization	
			base ft	Pu	φ * Pn		$\delta{ }^{\text {x * Mux }}$	δ^{y}	δy^{*} Muy	Alpha (deg)		$\varphi \mathrm{Mn}$	Ratio
+1.20D	M2,min	Actual	15.40	86.52	823.07	1.000	9.52	1.000		0.000	9.52	90.31	0.105
+0.90D	Actual	M2,min	15.40	64.89	823.07	1.000		1.000	7.14	90.000	7.14	90.61	0.079
+0.90D	M2,min	Actual	15.40	64.89	823.07	1.000	7.14	1.000		0.000	7.14	90.31	0.079

| Maximum Reactions | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Interaction Diagrams

Individual Footing Design

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof				
Roof Dead	(17psf)	(9.5ft)	$=$	162plf
Snow Live	(150psf)	(9.5ft)	$=$	1425plf

Upper Floor			
Floor Dead	$(12 p s f)$	(.0ft $)$	$=$
Floor Live	$(40 p s f)$	$(.0 f t)$	$=$

Main Floor				
Floor Dead	(12psf)	(.0ft $)$	$=$	plf
Floor Live	(40psf)	(.0ft)	$=$	plf

Deck Floor				
Floor Dead	(45psf)	(.0ft)	$=$	plf
Snow Live	$(75 p s f)$	$(.0 f t)$	$=$	plf

Misc				
Wall Load:	(18psf)	$(12.0 f t)$	$=$	216plf
Conc Stem:	(145pcf)	$(2 x .5 f t)$	$=$	145plf
Misc Load:	(.0ft)	(.0ft $) \quad(.0 f t)$	$=$	plf

1947plf

Use Footing Width:	18	x	8	in
$\mathrm{W} /$		(2)	$\# 4$	Cont.

Individual Footing Design

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof			
Roof Dead	(17psf)	(21.5ft)	$=$
Snow Live	(150psf)	(21.5ft)	$=$

Upper Floor			
Floor Dead	$(12 p s f)$	(.0ft $)$	$=$
Floor Live	$(40 p s f)$	$(.0 f t)$	$=$

Main Floor			
Floor Dead	(12psf)	$(4.5 f t)$	$=$
Floor Live	(40psf)	$(4.5 f t)$	$=$

Deck Floor			
Floor Dead	(45psf)	(7.0ft $)$	$=$
Snow Live	(75psf)	(7.0ft)	$=$

Misc				
Wall Load:	(18psf)	(12.0ft)	$=$	216plf
Conc Stem:	(145pcf)	$(4 x .5 f t)$	$=$	290plf
Misc Load:	(.0ft)	(.0ft $) \quad$ (.0ft)	$=$	plf

4990plf

Use Footing Width:	48	x	10	in
$\mathrm{W} /$		(4)	$\# 4$	Cont.

Individual Footing Design

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof			
Roof Dead	(17psf)	(10.0ft)	$=$
Snow Live	(150psf)	(10.0ft)	$=$

Upper Floor			
Floor Dead	$(12 p s f)$	(.0ft $)$	$=$
Floor Live	$(40 p s f)$	$(.0 f t)$	$=$

Main Floor			
Floor Dead	(12psf)	(4.0ft)	$=$
Floor Live	(40psf)	(4.0ft)	$=$

Deck Floor				
Floor Dead	(12psf)	(.Oft $)$	$=$	plf
Snow Live	(150psf)	(.Oft)	$=$	plf

Misc				
Wall Load:	(18psf)	$(12.0 f t)$	$=$	216plf
Conc Stem:	(145pcf)	$(2 \times .5 f t)$	$=$	145plf
Misc Load:	(.0ft)	(.0ft $) \quad(.0 f t)$	$=$	plf

2079plf

Use Footing Width:	18	\mathbf{x}	8	in
$\mathrm{W} /$		(2)	$\# 4$	Cont.

Individual Footing Design

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof				
Roof Dead	(17psf)	(23.0ft)	$=$	391plf
Snow Live	(150psf)	(23.0ft)	$=$	3450plf

Upper Floor			
Floor Dead	$(12 p s f)$	(.0ft $)$	$=$
Floor Live	$(40 p s f)$	$(.0 f t)$	$=$

Main Floor			
Floor Dead	(12psf)	(8.0ft	$=$
Floor Live	(40psf)	(8.0ft)	$=$

Deck Floor			
Floor Dead	(45psf)	(5.0ft	$=$
Snow Live	(75psf)	(5.0ft)	$=$

Misc				
Wall Load:	(18psf)	(12.0ft)	$=$	216plf
Conc Stem:	(145pcf)	$(4 x .5 f t)$	$=$	290plf
Misc Load:	(.0ft)	(.0ft $) \quad$ (.0ft)	$=$	plf

5043plf

Use Footing Width:	48	\mathbf{x}	10	in
$\mathrm{W} /$		(4)	$\# 4$	Cont.

Individual Footing Design

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof				
Roof Dead	(17psf)	(9.0ft	$=$	153plf
Snow Live	(150psf)	(9.0ft)	$=$	1350plf

Upper Floor			
Floor Dead	$(12 p s f)$	(.0ft $)$	$=$
Floor Live	$(40 p s f)$	$(.0 f t)$	$=$

Main Floor			
Floor Dead	$(12 p s f)$	$(6.0 f t)$	$=$
Floor Live	$(40 p s f)$	$(6.0 f t)$	$=$

Deck Floor				
Floor Dead	(12psf)	(.Oft $)$	$=$	plf
Snow Live	(150psf)	(.Oft)	$=$	plf

Misc				
Wall Load:	(18psf)	$(12.0 f t)$	$=$	216plf
Conc Stem:	(145pcf)	$(2 x .5 f t)$	$=$	145plf
Misc Load:	(.0ft)	(.0ft $) \quad(.0 f t)$	$=$	plf

1936plf

Use Footing Width:	18	x	8	in
$\mathrm{W} /$		(2)	$\# 4$	Cont.

Individual Footing Design

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof				
Roof Dead	(17psf)	(13.0ft)	$=$	221plf
Snow Live	(150psf)	(13.0ft)	$=$	1950plf

Upper Floor			
Floor Dead	$(12 p s f)$	(.0ft $)$	$=$
Floor Live	$(40 p s f)$	$(.0 f t)$	$=$

Main Floor			
Floor Dead	(12psf)	(4.0ft)	$=$
Floor Live	(40psf)	(4.0ft)	$=$

Deck Floor			
Floor Dead	(45psf)	(5.0ft	$=$
Snow Live	(75psf)	(5.0ft)	$=$

Misc				
Wall Load:	(18psf)	(12.0ft)	$=$	216plf
Conc Stem:	(145pcf)	$(4 x .5 f t)$	$=$	290plf
Misc Load:	(.0ft)	(.0ft $) \quad$ (.0ft)	$=$	plf

3325plf

Use Footing Width:	30	\mathbf{x}	10	in
$\mathrm{W} /$		(3)	$\# 4$	Cont.

Individual Footing Design

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof				
Roof Dead	(17psf)	(20.0ft)	$=$	340plf
Snow Live	(150psf)	(20.0ft)	$=$	3000plf

Upper Floor				
Floor Dead	(12psf)	(.Oft $)$	$=$	plf
Floor Live	(40psf)	(.Oft)	$=$	plf

Main Floor			
Floor Dead	(12psf)	$(4.5 f t)$	$=$
Floor Live	(40psf)	$(4.5 f t)$	$=$

Deck Floor				
Floor Dead	(12psf)	(.Oft $)$	$=$	plf
Snow Live	(150psf)	(.Oft)	$=$	plf

Misc				
Wall Load:	(18psf)	$(12.0 f t)$	$=$	216plf
Conc Stem:	(145pcf)	$(2 \times .5 f t)$	$=$	145plf
Misc Load:	(.0ft $)$	(.0ft $) \quad(.0 f t)$	$=$	plf

3755plf

Use Footing Width:	36	\mathbf{x}	10	in
$\mathrm{W} /$		(3)	$\# 4$	Cont.

Individual Footing Design

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof				
Roof Dead	(17psf)	(17.2ft)	$=$	292plf
Snow Live	(150psf)	$(17.2 f t)$	$=$	2574plf

Upper Floor				
Floor Dead	(12psf)	(.Oft $)$	$=$	plf
Floor Live	(40psf)	(.Oft)	$=$	plf

Main Floor				
Floor Dead	(12psf)	(.Oft $)$	$=$	plf
Floor Live	(40psf)	(.Oft $)$	$=$	plf

Deck Floor				
Floor Dead	(12psf)	(.Oft $)$	$=$	plf
Snow Live	(150psf)	(.Oft)	$=$	plf

Misc				
Wall Load:	(18psf)	$(12.0 f t)$	$=$	216plf
Conc Stem:	(145pcf)	$(2 \times .5 f t)$	$=$	145plf
Misc Load:	(.0ft $)$	(.0ft $) \quad(.0 f t)$	$=$	plf

3226plf

Use Footing Width:	30	\mathbf{x}	10	in
$\mathrm{W} /$		(3)	$\# 4$	Cont.

Individual Footing Design

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof				
Roof Dead	(17psf)	(16.8ft)	$=$	285plf
Snow Live	(150psf)	(16.8ft)	$=$	2513plf

Upper Floor				
Floor Dead	(12psf)	(.Oft $)$	$=$	plf
Floor Live	(40psf)	(.Oft)	$=$	plf

Main Floor			
Floor Dead	(12psf)	(5.5ft)	$=$
Floor Live	(40psf)	$(5.5 f t)$	$=$

Deck Floor				
Floor Dead	(12psf)	(.Oft $)$	$=$	plf
Snow Live	(150psf)	(.Oft)	$=$	plf

Misc				
Wall Load:	(18psf)	$(12.0 f t)$	$=$	216plf
Conc Stem:	(145pcf)	$(2 \times .5 f t)$	$=$	145plf
Misc Load:	(.0ft $)$	(.0ft $) \quad(.0 f t)$	$=$	plf

3224plf

Use Footing Width:	30	\mathbf{x}	10	in
$\mathrm{W} /$		(3)	$\# 4$	Cont.

Individual Footing Design

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof				
Roof Dead	(17psf)	(22.5ft)	$=$	383plf
Snow Live	(150psf)	(22.5ft)	$=$	3375plf

Upper Floor				
Floor Dead	(12psf)	(.Oft $)$	$=$	plf
Floor Live	(40psf)	(.Oft)	$=$	plf

Main Floor			
Floor Dead	(12psf)	(2.0ft $)$	$=$
Floor Live	(40psf)	(24.0ft $)$	$=$
$\mathbf{8 0 p l f}$			

Deck Floor				
Floor Dead	(12psf)	(.Oft $)$	$=$	plf
Snow Live	(150psf)	(.Oft)	$=$	plf

Misc				
Wall Load:	(18psf)	$(12.0 f t)$	$=$	216plf
Conc Stem:	$(145 p c f)$	$(2 \times .5 f t)$	$=$	145plf
Misc Load:	(.0ft)	(.0ft $) \quad(.0 f t)$	$=$	plf

4142plf

Use Footing Width:	42	x	10	in
$\mathrm{W} /$		(4)	$\# 4$	Cont.

Individual Footing Design

Program: Continuous Footing

Soil Bearing Pressure: 1500psf

Roof				
Roof Dead	(17psf)	(15.3ft)	$=$	259plf
Snow Live	(150psf)	$(15.3 f t)$	$=$	2288plf

Upper Floor				
Floor Dead	(12psf)	(.Oft $)$	$=$	plf
Floor Live	(40psf)	(.Oft)	$=$	plf

Main Floor				
Floor Dead	(12psf)	(.Oft $)$	$=$	plf
Floor Live	(40psf)	(.Oft $)$	$=$	plf

Deck Floor			
Floor Dead	(12psf)	(.Oft $)$	$=$
Snow Live	(150psf)	(.Oft $)$	$=$

Misc				
Wall Load:	(18psf)	$(12.0 f t)$	$=$	216plf
Conc Stem:	(145pcf)	$(2 \times .5 f t)$	$=$	145plf
Misc Load:	(.0ft $)$	(.0ft $) \quad(.0 f t)$	$=$	plf

2908plf

Use Footing Width:	30	\mathbf{x}	10	in
$\mathrm{W} /$		(3)	$\# 4$	Cont.

PAD FOOTING DESIGN CAPACITIES:

Soil Bearing (1500 psf)							
Dimensions (Inches)					Capacity	\# of Bars	Min. Col. Size
72	x	72	x	12	47,500 lbs	10	3.5 sq.
66	x	66	x	12	39,750 lbs	8	3.5 sq .
60	x	60	X	10	33,450 lbs	6	3.5 sq.
54	x	54	X	10	27,000 lbs	5	3.5 sq .
48	x	48	x	8	21,500 lbs	4	3.5 sq.
42	x	42	X	8	16,500 lbs	4	3.5 sq .
36	x	36	x	8	12,000 lbs	4	3.5 sq.
30	x	30	x	8	8,350 lbs	3	3.5 sq.
24	x	24	x	8	5,300 lbs	2	3.5 sq.
18	x	18	x	8	2,900 lbs	2	3.5 sq.

Bars to be $31 / 2^{\prime \prime}$ from bottom of pad. Evenly space in both directions.

CONT. FOOTING DESIGN CAPACITIES:

Soil Bearing (1500 psf)				
Dimensions (Inches)			Capacity	\# of Bars
60	x	10	$6,850 \mathrm{plf}$	6
54	x	10	$6,200 \mathrm{plf}$	5
48	x	10	$5,500 \mathrm{plf}$	4
42	x	10	$4,750 \mathrm{plf}$	4
36	x	10	$4,000 \mathrm{plf}$	3
30	x	10	$3,400 \mathrm{plf}$	3
24	x	8	$2,800 \mathrm{plf}$	2
18	x	8	$2,100 \mathrm{plf}$	2
16	x	8	$1,850 \mathrm{plf}$	2
12	x	8	$1,350 \mathrm{plf}$	2

Bars to be 3 1/2" from bottom of footing.

Project Title:
Engineer:
Project ID:
Project Descr:

General Footing

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.08.30
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: 71.8 K

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Material Properties		Soil Design Values	
f'c : Concrete 28 day strength	2.50 ksi	Allowable Soil Bearing	1.50 ksf
fy : Rebar Yield	60.0 ksi	Soil Density	110.0 pcf
Ec : Concrete Elastic Modulus	3,122.0 ksi	Increase Bearing By Footing Weight	No
Concrete Density	145.0 pcf	Soil Passive Resistance (for Sliding)	250.0 pcf
φ Values Flexure	0.90	Soil/Concrete Friction Coeff.	0.30
Shear	0.750	Increases based on footing Depth	
Analysis Settings		Footing base depth below soil surface	ft
Min Steel \% Bending Reinf.	$=$	Allow press. increase per foot of depth	ksf
Min Allow \% Temp Reinf.	0.00180	when footing base is below	ft
Min. Overturning Safety Factor	1.0:1		
Min. Sliding Safety Factor	1.0:1	Increases based on footing plan dimension	
Add Ftg Wt for Soil Pressure	Yes	Allowable pressure increase per foot of depth	
Use ftg wt for stability, moments \& shears	Yes	when max length or width is greater than =	ksf
Add Pedestal Wt for Soil Pressure	No	th or width is greater than	ft
Use Pedestal wt for stability, mom \& shear	No		

Dimensions

Project Title:
Engineer:
Project ID:
Project Descr:

Soil Bearing

Rotation Axis \& Load Combination...	Gross Allowable	Xecc	(in)	Actual Soil Bearing Stress @ Location				Actual / Allow Ratio
				Bottom, -Z	Top, +Z	Left, -X	Right, +X	
X-X, D Only	1.50	n/a	0.0	1.470	1.470	n/a	n/a	0.980
X-X, +0.60D	1.50	n/a	0.0	0.8819	0.8819	n/a	n/a	0.588
Z-Z, D Only	1.50	0.0	n/a	n/a	n/a	1.470	1.470	0.980
Z-Z, +0.60D	1.50	0.0	n/a	n/a	n/a	0.8819	0.8819	0.588

Overturning Stability
$\left.\begin{array}{lllllllll}\begin{array}{c}\text { Rotation Axis \& } \\ \text { Load Combination... }\end{array} & & \text { Overturning Moment }\end{array}\right]$

Load Combination...	Vu @ -x	Vu @ +X	Vu @ -Z	Vu @ +Z	Vu:Max	Phi Vn Vu	Vu / Phi*Vn	Status
+1.40D	30.93 psi	75.00 psi	si 0.41	OK				
+1.20D	26.51 psi	75.00 psi	si 0.35	OK				
+0.90D	19.88 psi	75.00 psi	i 0.27	OK				

Project Title:
Engineer:
Project ID:
Project Descr:

General Footing	
LIC\#: KW-06013353, Build:20.23.08.30	Project File: 05 Beams.ec6

DESCRIPTION: 71.8 K

Two-Way "Punching" Shear			
Load Combination...	Vu units k	Phi*Vn	Vu $/$ Phi*Vn
+1.40D	145.78 psi	150.00 psi	0.9719
+1.20 D	124.96 psi	150.00 psi	0.8331
+0.90 D	93.72 psi	150.00 psi	0.6248

Project Title:
Engineer:
Project ID:
Project Descr:

General Footing

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.08.30
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: 58.5 K

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Material Properties		Soil Design Values	
f'c : Concrete 28 day strength	2.50 ksi	Allowable Soil Bearing	1.50 ksf
fy : Rebar Yield	60.0 ksi	Soil Density	110.0 pcf
Ec: Concrete Elastic Modulus	$3,122.0 \mathrm{ksi}$	Increase Bearing By Footing Weight	No
Concrete Density	145.0 pcf	Soil Passive Resistance (for Sliding)	250.0 pcf
φ Values Flexure	0.90	Soil/Concrete Friction Coeff.	0.30
Shear	0.750	Increases based on footing Depth	
Analysis Settings		Footing base depth below soil surface	ft
Min Steel \% Bending Reinf.	$=$	Allow press. increase per foot of depth	ksf
Min Allow \% Temp Reinf.	0.00180	when footing base is below	ft
Min. Overturning Safety Factor	1.0:1		
Min. Sliding Safety Factor	1.0:1	Increases based on footing plan dimension	
Add Ftg Wt for Soil Pressure	Yes	Allowable pressure increase per foot of depth	
Use ftg wt for stability, moments \& shears	Yes	when max length or width is greater than =	ksf
Add Pedestal Wt for Soil Pressure	No	or width is greater than	ft
Use Pedestal wt for stability, mom \& shear	No		

Dimensions

Project Title:
Engineer:
Project ID:
Project Descr:

General Footing

Project File: 05 Beams.ec6
LIC\#: KW-06013353, Build:20.23.08.30
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: 58.5 K
DESIGN SUMMARY
Design OK

	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.9767	Soil Bearing	1.465 ksf	1.50 ksf	D Only about Z-Z axis
PASS	n/a	Overturning - $\mathrm{X}-\mathrm{X}$	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.6009	Z Flexure (+X)	10.238 k-ft/ft	17.038 k-ft/ft	+1.40D
PASS	0.6009	Z Flexure (-X)	$10.238 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	$17.038 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	+1.40D
PASS	0.6009	X Flexure (+Z)	10.238 k-ft/ft	17.038 k-ft/ft	+1.40D
PASS	0.6009	X Flexure (-Z)	$10.238 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	$17.038 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	+1.40D
PASS	0.3932	1-way Shear (+X)	29.491 psi	75.0 psi	+1.40D
PASS	0.3932	1-way Shear (-X)	29.491 psi	75.0 psi	+1.40D
PASS	0.3932	1-way Shear (+Z)	29.491 psi	75.0 psi	+1.40D
PASS	0.3932	1-way Shear (-Z)	29.491 psi	75.0 psi	+1.40D
PASS	0.9293	2-way Punching	139.401 psi	150.0 psi	+1.40D

Detailed Results

Soil Bearing

Rotation Axis \& Load Combination...	Gross Allowable	Xecc		Actual Soil Bearing Stress @ Location				Actual / Allow
				Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.50	n/a	0.0	1.465	1.465	n/a	n/a	0.977
X-X, +0.60D	1.50	n/a	0.0	0.8791	0.8791	n/a	n/a	0.586
Z-Z, D Only	1.50	0.0	n/a	n/a	n/a	1.465	1.465	0.977
Z-Z, +0.60D	1.50	0.0	n/a	n/a	n/a	0.8791	0.8791	0.586

Overturning Stability

One Way Shear

Load Combination...	Vu @ -X	Vu @ +X	Vu @ -Z	Vu @ +Z	Vu:Max	Phi Vn V	Vu / Phi*Vn	Status
+1.40D	29.49 psi	75.00 psi	si 0.39	OK				
+1.20D	25.28 psi	25.28 psi	25.28 psi	i 25.28 psi	25.28 psi	75.00 psi	si 0.34	OK
+0.90D	18.96 psi	18.96 psi	18.96 psi	i 18.96 psi	18.96 psi	75.00 psi	si 0.25	OK

Project Title:
Engineer:
Project ID:
Project Descr:
General Footing Project File: 05 Beams.ec6

LIC\# : KW-06013353, Build:20.23.08.30 SNAKE RIVER ENGINEERING (c) ENERCALC INC 1983-2023
DESCRIPTION: 58.5 K
Two-Way "Punching" Shear All units k

Load Combination...	Vu	Phi*Vn	Vu $/ \mathbf{P h i}^{*}$ Vn	Status
+1.40 D	139.40 psi	150.00 psi	0.9293	OK
+1.20 D	119.49 psi	150.00 psi	0.7966	OK
+0.90D	89.62 psi	150.00 psi	0.5974	OK

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

LIC\# : KW-06013353, Build:20.23.08.30
SNAKE RIVER ENGINEERING
DESCRIPTION: F1
Code Reference:
Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

Criteria		
Retained Height	$=$	7.33 ft
Wall height above soil	$=$	0.67 ft
Slope Behind Wall	$=$	0.00
Height of Soil over Toe	$=$	6.00 in
Water table above bottom of footing$=0.0 \mathrm{ft}$		

\section*{Surcharge Loads
 | Surcharge Over Heel Used To Resist Slidin | $\begin{gathered} 0.0 \mathrm{psf} \\ \text { Overturning } \end{gathered}$ |
| :---: | :---: |
| Surcharge Over Toe | 0.0 |
| Used for Sliding \& Ov | rning |

Axial Load Applied to Stem		
Axial Dead Load	$=$	371.0 lbs
Axial Live Load	$=$	$1,688.0 \mathrm{lbs}$
Axial Load Eccentricity	$=$	0.0 in

Allow Soil Bearing $=1,500$ Equivalent Fluid Pressure Method			
Active Heel Pressure	=	35.0 psf/ft	
	=		
Passive Pressure	=	250.0 psf/ft	
Soil Density, Heel	=	110.00 pcf	
Soil Density, Toe	=	110.00 pcf	
Footing\|	Soil Friction	=	0.400
Soil height to ignore for passive pressure		12.00 in	

Lateral Load Applied to Stem

Lateral Load	$=$	$0.0 \# / \mathrm{ft}$
\ldots. Height to Top	$=$	0.00 ft
\ldots Height to Bottom	$=$	0.00 ft
Load Type	$=$	Wind (W)
		(Strength Level)

Wind on Exposed Stem $=\quad 0.0$ psf (Strength Level)

Adjacent Footing Load		
Adjacent Footing Load	$=$	0.0 lbs
Footing Width	$=$	0.00 ft
Eccentricity	$=$	0.00 in
Wall to Ftg CL Dist	$=$	0.00 ft
Footing Type		Spread Footing
Base Above/Below Soil	$=$	0.0 ft
$\begin{array}{lll}\text { at Back of Wall } & = & 0.300\end{array}$		
$\begin{array}{lll}\text { Poisson's Ratio } & & \end{array}$.		

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

Project File: 05 Beams.ec6

LIC\# : KW-06013353, Build:20.23.08.30
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: F1

Stem Construction		Bottom		
Design Height Above Fto	$\mathrm{ft}=$	$\begin{array}{r} \text { Stem OK } \\ 0.00 \end{array}$		
Wall Material Above "Ht"	=	Concrete		
Design Method	=	SD	SD	SD
Thickness	=	8.00		
Rebar Size	=	\# 5		
Rebar Spacing	=	18.00		
Rebar Placed at	=	Edge		
Design Data $\mathrm{fb} / \mathrm{FB}+\mathrm{fa} / \mathrm{Fa}$	=	0.664		
Total Force @ Section				
Service Level	lbs =			
Strength Level	\|bs =	1,504.4		
Moment....Actual				
Service Level	ft-\# =			
Strength Level	ft-\# =	3,675.8		
Moment.....Allowable	=	5,527.6		
Shear.....Actual				
Service Level	psi $=$			
Strength Level	psi $=$	20.3		
Shear.....Allowable	psi $=$	75.0		
Anet (Masonry)	in2 $=$			
Wall Weight	$\mathrm{psf}=$	100.0		
Rebar Depth 'd'	in =	6.19		
Masonry Data				
f'm	psi $=$			
Fs	psi $=$			
Solid Grouting	ps			
Modular Ratio ' n '	=			
Equiv. Solid Thick.	=			
Masonry Block Type	$=$			
Masonry Design Method	=	ASD		
Concrete Data f'c	psi $=$	2,500.0		
Fy	psi $=$	60,000.0		

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall	
LIC\#: KW-06013353, Build:20.23.08.30	Project File: 05 Beams.ec6

DESCRIPTION: F1

Concrete Stem Rebar Area Details

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.08.30
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: F1
Summary of Overturning \& Resisting Forces \& Moments

	Force lbs	ISTING..... Distance ft	Moment ft-\#
Soil Over HL (ab. water tbl)	470.3	3.21	1,509.0
Soil Over HL (bel. water tbl)		3.21	1,509.0
Water Table			
Sloped Soil Over Heel =			
Surcharge Over Heel			
Adjacent Footing Load =			
Axial Dead Load on Stem =	371.0	2.58	958.4
* Axial Live Load on Stem =	1,688.0	2.58	4,360.7
Soil Over Toe	123.8	1.13	139.2
Surcharge Over Toe			
Stem Weight(s) =	800.0	2.58	2,066.7
Earth @ Stem Transitions=			
Footing Weight =	612.5	1.75	1,071.9
Key Weight			
Vert. Component			
Total =	2,377.6	R.M. $=$	5,745.2

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

| Soil Spring Reaction Modulus | 250.0 pci |
| :--- | :--- | :--- |
| Horizontal Defl @ Top of Wall (approximate only) | 0.092 in |

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall	
LIC\#: KW-06013353, Build:20.23.08.30	Project File: 05 Beams.ec6

LIC\# : KW-06013353, Build:20.23.08.30 SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: F1

Rebar Lap \& Embedment Lengths Information

Stem Design Segment: Bottom
Stem Design Height: $\quad 0.00 \mathrm{ft}$ above top of footing

Lap Splice length for \#5 bar specified in this stem design segment $(25.4 .2 .3 \mathrm{a})=$	23.40 in
Development length for \#5 bar specified in this stem design segment =	18.00 in
Hooked embedment length into footing for \#5 bar specified in this stem design segment =	10.50 in
As Provided =	$0.2067 \mathrm{in} 2 / \mathrm{ft}$
As Required =	0.1856 in2/ft

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.08.30
SNAKE RIVER ENGINEERING (c) ENERCALC INC 1983-2023

DESCRIPTION: F1

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

LIC\# : KW-06013353, Build:20.23.08.30
SNAKE RIVER ENGINEERING
DESCRIPTION: F13 CANT.

Code Reference:

Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

Criteria		
Retained Height	$=$	4.00 ft
Wall height above soil	$=$	0.75 ft
Slope Behind Wall	$=$	0.00
Height of Soil over Toe	$=$	6.00 in
Water table above bottom of footing$=0.0 \mathrm{ft}$		

\section*{Surcharge Loads
 Surcharge Over Heel $=$| 0.0 psf |
| :---: |
| Used To Resist Sliding $\&$ |
| Surcharge Over Toe |
| O |
| Used for Sliding \& Overturning |$\quad 0.0$}

Axial Load Applied to Stem		
Axial Dead Load	$=$	279.0 lbs
Axial Live Load	$=$	490.0 lbs
Axial Load Eccentricity	$=$	0.0 in

Allow Soil Bearing $\quad=1,500$ Equivalent Fluid Pressure Method			
Active Heel Pressure	=	35.0 psf/ft	
	=		
Passive Pressure	=	250.0 psf/ft	
Soil Density, Heel	=	110.00 pcf	
Soil Density, Toe	=	110.00 pcf	
Footing\|	Soil Friction	=	0.400
Soil height to ignore for passive pressure		12.00 in	

Lateral Load Applied to Stem

Lateral Load	$=$	0.0 \#/ft
...Height to Top	=	0.00 ft
...Height to Bottom	=	0.00 ft
Load Type		Wind (W) (Strength Level)
Wind on Exposed Stem (Strength Level)		0.0 psf

Adjacent Footing Load		
Adjacent Footing Load	$=$	0.0 lbs
Footing Width	$=$	0.00 ft
Eccentricity	$=$	0.00 in
Wall to Ftg CL Dist	$=$	0.00 ft
Footing Type		Spread Footing
Base Above/Below Soil	$=$	0.0 ft
$\begin{array}{lll}\text { at Back of Wall } & = & 0.300\end{array}$		
$\begin{array}{lll}\text { Poisson's Ratio } & & \end{array}$.		

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

Project File: 05 Beams.ec6

LIC\# : KW-06013353, Build:20.23.08.30
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: F13 CANT.

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

Project File: 05 Beams.ec6

LIC\# : KW-06013353, Build:20.23.08.30
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: F13 CANT.

Concrete Stem Rebar Area Details

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.08.30
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: F13 CANT.
Summary of Overturning \& Resisting Forces \& Moments

	Force lbs	$\begin{gathered} \text { SISTING...... } \\ \text { Distannee } \\ \mathrm{ft} \end{gathered}$	$\underset{\mathrm{ft}-\#}{\text { Moment }}$
Soil Over HL (ab. water tbl)	146.7	1.83	268.9
Soil Over HL (bel. water tbl)		1.83	268.9
Water Table			
Sloped Soil Over Heel =			
Surcharge Over Heel			
Adjacent Footing Load =			
Axial Dead Load on Stem $=$	279.0	1.33	372.0
* Axial Live Load on Stem $=$	490.0	1.33	653.3
Soil Over Toe	55.0	0.50	27.5
Surcharge Over Toe			
Stem Weight(s)	475.0	1.33	633.3
Earth @ Stem Transitions =			
Footing Weight	350.0	1.00	350.0
Key Weight			
Vert. Component			
Total $=$	1,305.7	R.M. $=$	1,651.7

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

| Soil Spring Reaction Modulus | 250.0 pci |
| :--- | :--- | :--- |
| Horizontal Defl @ Top of Wall (approximate only) | 0.088 in |

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall	Project File: 05 Beams.ec6
LIC\#: KW-06013353, Build:20.23.08.30	(c) ENERCALC INC 1983-2023

LIC\#: KW-06013353, Build:20.23.08.30 SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: F13 CANT.

Rebar Lap \& Embedment Lengths Information

Stem Design Segment: Bottom
Stem Design Height: $\quad 0.00 \mathrm{ft}$ above top of footing

Lap Splice length for \#5 bar specified in this stem design segment $(25.4 .2 .3 \mathrm{a})=$	23.40 in
Development length for \#5 bar specified in this stem design segment =	18.00 in
Hooked embedment length into footing for \#5 bar specified in this stem design segment =	10.50 in
As Provided =	$0.2067 \mathrm{in} 2 / \mathrm{ft}$
As Required =	$0.1728 \mathrm{in} 2 / \mathrm{ft}$

Project Title:
Engineer:
Project ID:
Project Descr:

Cantilevered Retaining Wall

DESCRIPTION: F13 CANT.

DESCRIPTION: F13

Code Reference:
Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

Design Summary		
Total Bearing Load	$=$	$3,609.33 \mathrm{lbs}$
\ldots. resultant ecc.	$=$	0.0 in
Soil Pressure @ Toe	$=$	$1,443.73 \mathrm{psf}$ OK
Soil Pressure @ Heel	$=$	$1,443.73 \mathrm{psf}$ OK
Allowable	$=$	psf
Soil Pressure Less Than Allowable		
ACI Factored @ Toe	$=$	$1,810.88 \mathrm{psf}$
ACI Factored @ Heel	$=$	$1,810.88 \mathrm{psf}$
Footing Shear @ Toe	$=$	0.1567 psi OK
Footing Shear @ Heel	$=$	1.796 psi OK
Allowable	$=$	75.0 psi
Reaction at Top	$=$	299.750 lbs
Reaction at Bottom	$=1,784.70 \mathrm{lbs}$	
Sliding Calcs		
Lateral Sliding Force	$=1,784.70 \mathrm{lbs}$	

Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing

Soil Data

Allow Soil Bearing $\quad=\quad 1,500.0 \mathrm{psf}$Equivalent Fluid Pressure Method			
At-Rest Heel Pressure	=	$32.0 \mathrm{psf} / \mathrm{ft}$	
	=	$0.0 \mathrm{psf} / \mathrm{ft}$	
Passive Pressure	=	250.0 psf/ft	
Soil Density	=	110 pcf	
Footing\|	Soil Frictior	=	0.4 psf
Soil height to ignore for passive pressure	=	12 in	

Uniform Lateral Load Applied to Stem		
Lateral Load	$=$	$\# / f t$
\ldots Height to Top	$=$	ft
\ldots Height to Bottom	$=$	ft
Load Type	$=$	Wind (W)
(Strength Level)		
Wind on Exposed Stem	$=$0.00 psf (Strength Level)	
Wind acts left-to-right toward retention side.		

K_{h} Soil Density Multiplier $=0.2 \mathrm{~g} \quad$ Added seismic per unit area $=0.0 \mathrm{psf}$

Concrete Stem Construction
Thickness $=\quad 8.00$ in
Wall Weight $=\quad 100.0$ psf
Stem is FIXED to top of footing

| | | @ Top Support |
| :--- | :--- | :---: | :---: | :---: | | Mmax Between |
| :---: |
| Top \& Base |\quad @ Base of Wall

Load Factors	
\quad Building Code	
Dead Load	
Live Load	1.200
Earth, H	1.600
Wind, Wy $1 / 23 / 24$	1.600
Seismic, E	1.000

Project Title:
Engineer:
Project ID:
Project Descr:

Restrained Retaining Wall

DESCRIPTION: F13

Footing Strengths \& Dimensions

Toe Width	$=.83333333 \mathrm{ft}$
Heel Width	= 66666666
Total Footing Width	$=2.50$
Footing Thickness	14.0 in
Key Width	in
Key Depth	in
Key Distance from Toe	ft
$\mathrm{f}^{\prime} \mathrm{c}=2,500.0 \mathrm{psi}$	$F y=60000 \mathrm{psi}$
Footing Concrete Density	$=150 \mathrm{pcf}$
Min. As \%	$=0.0018$
Cover @ Top = 2 in	@ Btm. $=3$ in

Footing Design Results

		Toe	Heel
Factored Pressure	$=$	$1,810.88$	$1,810.88 \mathrm{psf}$
Mu' : Upward	$=$	628.78	$\mathrm{ft}-\#$
Mu' : Downward	$=$	164.583	$\mathrm{ft}-\#$
Mu: Design	$=$	464	$-124 \mathrm{ft}-\#$
Actual 1-Way Shear	$=$	0.1567	psi
Allow 1-Way Shear	$=$	75.0	75.0 psi

Other Acceptable Sizes \& Spacings:	
Toe: \# 7 @ 18.00 in -or-	-or- phiMn $=$ phi * 5 * lambda * sqrt(fc) * Sm
Heel:None Spec'd -or-	-or- phiMn $=$ phi * 5 * lambda * sqrt(fc) * Sm
Key: \# 0 @ 0.00 in -or-	-or- No key defined
Min footing T\&S reinf Area	0.76 in2
Min footing T\&S reinf Area per foot	oot 0.30 in2 ft
If one layer of horizontal bars: If	If two layers of horizontal bars:
\#4@ 7.94 in	\#4@15.87 in
\#5@12.30 in	\#5@ 24.60 in
\#6@ 17.46 in	\#6@34.92 in

Summary of Forces on Footing: Slab RESISTS sliding, stem is FIXED at footing
Forces acting on footing for soil pressure
>>> Sliding Forces are restrained by the adjacent slab Load \& Moment Summary For Footing : For Soil Pressure Calcs

Moment @ Top of Footing Applied from Stem	$=$	$-2,459.23 \mathrm{ft}-\#$		
Surcharge Over Heel	$=$	0.0 lbs	0.0 ft	$0.0 \mathrm{ft}-\#$
Adjacent Footing Load	$=$	0.0 lbs	0.0 ft	$0.0 \mathrm{ft}-\#$
Axial Dead Load on Stem	$=$	769.0 lbs	1.167 ft	$897.17 \mathrm{ft}-\#$
Soil Over Toe	$=$	183.333 lbs	0.4167 ft	$76.389 \mathrm{ft}-\#$
Surcharge Over Toe	$=$	0.0 lbs	0.0 ft	$0.0 \mathrm{ft}-\#$
Stem Weight	$=$	$1,092.0 \mathrm{lbs}$	1.167 ft	$1,274.0 \mathrm{ft}-\#$
Soil Over Heel	$=$	$1,127.50 \mathrm{lbs}$	2.0 ft	$2,255.0 \mathrm{ft}-\#$
Footing Weight	$=$	437.50 lbs	1.250 ft	$546.88 \mathrm{ft}-\#$
Total Vertical Force	$=$	$3,609.33 \mathrm{lbs}$	Base Moment	$2,590.20 \mathrm{ft}-\#$

Stem is specified to be fixed to footing, and top restraint is assumed to react out any tendency for moment at the footing/soil interface, so uniform soil pressure is assumed.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Project Title:
Engineer:
Project ID:
Project Descr:

Restrained Retaining Wall

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.08.30
SNAKE RIVER ENGINEERING (c) ENERCALC INC 1983-2023

DESCRIPTION: F13

1443.73psf
1443.73psf

DESCRIPTION: F14

Code Reference:
Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

Design Summary		
Total Bearing Load	$=$	$5,053.08 \mathrm{lbs}$
..resultant ecc.	$=$	0.0 in
Soil Pressure @ Toe	$=$	$1,443.74 \mathrm{psf}$ OK
Soil Pressure @ Heel	$=$	$1,443.74 \mathrm{psf}$ OK
Allowable	$=$	psf
Soil Pressure Less Than Allowable		
ACI Factored @ Toe	$=$	$1,848.83 \mathrm{pss}$
ACl Factored @ Heel	$=1,848.83 \mathrm{psf}$	
Footing Shear @ Toe	$=$	5.001 psi OK
Footing Shear @ Heel	$=$	3.107 psi OK
Allowable	$=$	75.0 psi
Reaction at Top	$=$	299.750 lbs
Reaction at Bottom	$=1,784.70 \mathrm{lbs}$	
Sliding Calcs		
Lateral Sliding Force	$=1,784.70 \mathrm{lbs}$	

Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing

Soil Data

Allow Soil BearingEquivalent Fluid Pressure Method			
At-Rest Heel Pressure	=	32.0 psf/ft	
	=	$0.0 \mathrm{psf} / \mathrm{ft}$	
Passive Pressure	=	250.0 psf/ft	
Soil Density	=	110 pcf	
Footing\|	Soil Frictior	=	0.4 psf
Soil height to ignore for passive pressure	=	12 in	

Uniform Lateral Load Applied to Stem		
Lateral Load	$=$	$\# / \mathrm{ft}$
\ldots Height to Top	$=$	ft
\ldots Height to Bottom	$=$	ft
Load Type	$=$	Wind (W)
		(Strength Level)
Wind on Exposed Stem	0.00 psf	
		(Strength Level)
Wind acts left-to-right toward retention side.		

K_{h} Soil Density Multiplier $=0.2 \mathrm{~g} \quad$ Added seismic per unit area $=0.0 \mathrm{psf}$

Concrete Stem Construction
Thickness $=\quad 8.00 \mathrm{in}$
Wall Weight $=\quad 100.0 \mathrm{psf}$
Stem is FIXED to top of footing

| | | @ Top Support |
| :--- | :--- | :---: | :---: | :---: | | Mmax Between |
| :---: |
| Top \& Base |\quad @ Base of Wall

Load Factors	
\quad Building Code	
Dead Load	1.200
Live Load	1.600
Earth, H	1.600
Wind, Wy1/23/24	1.000
Seismic, E	1.000

Project Title:
Engineer:
Project ID:
Project Descr:

Restrained Retaining Wall

DESCRIPTION: F14

Footing Strengths \& Dimensions

Toe Width	$=.33333333 \mathrm{ft}$
Heel Width	= . 16666666
Total Footing Width	3.50
Footing Thickness	14.0 in
Key Width	in
Key Depth	in
Key Distance from Toe	ft
$\mathrm{f}^{\prime} \mathrm{c}=2,500.0 \mathrm{psi}$	$F y=60000 \mathrm{psi}$
Footing Concrete Density	$=150 \mathrm{pcf}$
Min. As \%	$=0.0018$
Cover @ Top = 2 in	@ Btm.= 3 in

Footing Design Results

	Toe Heel		
Factored Pressure	$=$	$1,848.83$	$1,848.83 \mathrm{psf}$
Mu' : Upward	$=$	$1,643.40$	$\mathrm{ft}-\#$
Mu' $^{\prime}$ Downward	$=$	421.333	$\mathrm{ft}-\#$
Mu: Design	$=$	1,222	$-322 \mathrm{ft}-\#$
Actual 1-Way Shear	$=$	5.001	psi
Allow 1-Way Shear	$=$	75.0	75.0 psi

Other Acceptable Sizes \& Spacings:	
Toe: \# 7 @ 18.00 in -or-	-or- phiMn $=$ phi * 5 * lambda * sqrt(fc) * Sm
Heel:None Spec'd -or-	-or- phiMn = phi * 5 * lambda * sqrt(fc) * Sm
Key: \# 0 @ 0.00 in -or-	-or- No key defined
Min footing T\&S reinf Area	1.06 in2
Min footing T\&S reinf Area per foot	oot 0.30 in2 ft
If one layer of horizontal bars: If	If two layers of horizontal bars:
\#4@ 7.94 in	\#4@15.87 in
\#5@12.30 in	\#5@ 24.60 in
\#6@ 17.46 in	\#6@34.92 in

Summary of Forces on Footing: Slab RESISTS sliding, stem is FIXED at footing
Forces acting on footing for soil pressure
>>> Sliding Forces are restrained by the adjacent slab Load \& Moment Summary For Footing : For Soil Pressure Calcs

Moment @ Top of Footing Applied from Stem	$=$	$-2,459.23 \mathrm{ft}-\#$		
Surcharge Over Heel	$=$	0.0 lbs	0.0 ft	$0.0 \mathrm{ft}-\#$
Adjacent Footing Load	$=$	0.0 lbs	0.0 ft	$0.0 \mathrm{ft}-\#$
Axial Dead Load on Stem	$=$	$1,364.0 \mathrm{lbs}$	1.667 ft	$2,273.33 \mathrm{ft}-\#$
Soil Over Toe	$=$	293.333 lbs	0.6667 ft	$195.556 \mathrm{ft}-\#$
Surcharge Over Toe	$=$	0.0 lbs	0.0 ft	$0.0 \mathrm{ft}-\#$
Stem Weight	$=$	$1,092.0 \mathrm{lbs}$	1.667 ft	$1,820.0 \mathrm{ft-} \mathrm{\#}$
Soil Over Heel	$=$	$1,691.25 \mathrm{lbs}$	2.750 ft	$4,650.94 \mathrm{ft}-\#$
Footing Weight	$=$	612.50 lbs	1.750 ft	$1,071.88 \mathrm{ft}-\#$
Total Vertical Force	$=$	$5,053.08 \mathrm{lbs}$	Base Moment	$7,552.47 \mathrm{ft}-\#$

Stem is specified to be fixed to footing, and top restraint is assumed to react out any tendency for moment at the footing/soil interface, so uniform soil pressure is assumed.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Project Title:
Engineer:
Project ID:
Project Descr:

Restrained Retaining Wall

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.08.30
SNAKE RIVER ENGINEERING (c) ENERCALC INC 1983-2023

DESCRIPTION: F14

Lateral Restraint 346 ,LL=1018\#, Ecc=0"
299.75\#

DESCRIPTION: F8

Code Reference:
Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

Retained Height	=	9.0 ft
Wall height above soil	$=$	0.670 ft
Total Wall Height	=	9.670 ft
Top Support Height	=	9.67 ft
Slope Behind Wall Height of Soil over Toe	$=$	$\begin{gathered} 0 \\ 6.0 \text { in } \end{gathered}$
Surcharge Loads		
Surcharge Over Heel >>>Used To Resist S Surcharge Over Toe Used for Sliding \& Ove		psf \& Overturning psf ing
Axial Load Applied to Stem		
Axial Dead Load Axial Live Load Axial Load Eccentricity	$=$ $=$	$\begin{aligned} & 434.0 \mathrm{lbs} \\ & 1,660.0 \mathrm{lbs} \\ & \text { in } \end{aligned}$
Earth Pressure Seismic Load		

Design Summary		
Total Bearing Load	$=$	$5,580.58 \mathrm{lbs}$
\ldots resultant ecc.	$=$	0.0 in
Soil Pressure @ Toe	$=$	$1,395.15 \mathrm{psf}$ OK
Soil Pressure @ Heel	$=$	$1,395.15 \mathrm{psf}$ OK
Allowable	$=$	psf
Soil Pressure Less Than Allowable		
ACI Factored @ Toe	$=$	$1,840.18 \mathrm{psf}$
ACl Factored @ Heel	$=$	$1,840.18 \mathrm{psf}$
Footing Shear @ Toe	$=$	8.793 psi OK
Footing Shear @ Heel	$=$	5.607 psi OK
Allowable	$=$	75.0 psi
Reaction at Top	$=$	227.412 lbs
Reaction at Bottom	$=1,425.37 \mathrm{lbs}$	
Sliding Calcs		
Lateral Sliding Force	$=1,425.37 \mathrm{lbs}$	

Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing

Soil Data

Allow Soil Bearing ${ }^{\text {Equivalent Fluid Pressure Method }} 10.500 .0 \mathrm{psf}$			
At-Rest Heel Pressure	=	$32.0 \mathrm{psf} / \mathrm{ft}$	
	=	0.0 psf/ft	
Passive Pressure	=	250.0 psf/ft	
Soil Density	=	110 pcf	
Footing\|	Soil Frictior	=	0.4 psf
Soil height to ignore for passive pressure	=	12 in	

Uniform Lateral Load Applied to Stem		
Lateral Load	$=$	$\# / \mathrm{ft}$
\ldots Height to Top	$=$	ft
\ldots Height to Bottom	$=$	ft
Load Type	$=$	Wind (W)
		(Strength Level)
Wind on Exposed Stem	0.00 psf	
		(Strength Level)
Wind acts left-to-right toward retention side.		

K_{h} Soil Density Multiplier $=0.2 \mathrm{~g} \quad$ Added seismic per unit area $=0.0 \mathrm{psf}$

Concrete Stem Construction
Thickness $=\quad 8.00 \mathrm{in}$
Wall Weight $=\quad 100.0 \mathrm{psf}$
Stem is FIXED to top of footing

| | | @ Top Support |
| :--- | :--- | :---: | :---: | :---: | | Mmax Between |
| :---: |
| Top \& Base |\quad @ Base of Wall

Load Factors	
\quad Building Code	
Dead Load	1.200
Live Load	1.600
Earth, H	1.600
Wind, Wy1/23/24	1.000
Seismic, E	1.000

Project Title:
Engineer:
Project ID:
Project Descr:

Restrained Retaining Wall

DESCRIPTION: F8

Footing Strengths \& Dimensions

Toe Width	$=.58333333 \mathrm{ft}$
Heel Width	= . 41666666
Total Footing Width	4.0
Footing Thickness	14.0 in
Key Width	in
Key Depth	in
Key Distance from Toe	ft
$\mathrm{f}^{\prime} \mathrm{c}=2,500.0 \mathrm{psi}$	$F y=60000 \mathrm{psi}$
Footing Concrete Density	$=150 \mathrm{pcf}$
Min. As \%	$=0.0018$
Cover @ Top = 2 in	@ Btm. $=3$ in

Footing Design Results

		Toe	Heel
Factored Pressure	$=$	$1,840.18$	$1,840.18 \mathrm{psf}$
Mu' : Upward $^{\text {Mu' }}$ Downward	$=$	$2,306.61$	$\mathrm{ft}-\#$
Mu^{\prime}	345.958	$\mathrm{ft}-\#$	
Mu: Design	$=$	1,961	$-677 \mathrm{ft-} \mathrm{\#}$
Actual 1-Way Shear	$=$	8.793	psi
Allow 1-Way Shear	$=$	75.0	75.0 psi

Other Acceptable Sizes \& Spacings:
Toe: \# 7 @ 18.00 in
Heel: None Spec'd
Key: \# 0 @ 0.00 in

Summary of Forces on Footing: Slab RESISTS sliding, stem is FIXED at footing
Forces acting on footing for soil pressure
>>> Sliding Forces are restrained by the adjacent slab Load \& Moment Summary For Footing : For Soil Pressure Calcs

Moment @ Top of Footing Applied from Stem	$=$	$-1,679.26 \mathrm{ft}-\#$		
Surcharge Over Heel	$=$	0.0 lbs	0.0 ft	$0.0 \mathrm{ft}-\#$
Adjacent Footing Load	$=$	0.0 lbs	0.0 ft	$0.0 \mathrm{ft}-\#$
Axial Dead Load on Stem	$=$	$2,094.0 \mathrm{lbs}$	1.917 ft	$4,013.50 \mathrm{ft}-\#$
Soil Over Toe	$=$	87.083 lbs	0.7917 ft	$68.941 \mathrm{ft-} \mathrm{\#}$
Surcharge Over Toe	$=$	0.0 lbs	0.0 ft	$0.0 \mathrm{ft}-\#$
Stem Weight	$=$	967.0 lbs	1.917 ft	$1,853.42 \mathrm{ft-} \mathrm{\#}$
Soil Over Heel	$=$	$1,732.50 \mathrm{lbs}$	3.125 ft	$5,414.06 \mathrm{ft}-\#$
Footing Weight	$=$	700.0 lbs	2.0 ft	$1,400.0 \mathrm{ft}-\#$
Total Vertical Force	$=$	$5,580.58 \mathrm{lbs}$	Base Moment	$11,070.7 \mathrm{ft}-\#$

Stem is specified to be fixed to footing, and top restraint is assumed to react out any tendency for moment at the footing/soil interface, so uniform soil pressure is assumed.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Project Title:
Engineer:
Project ID:
Project Descr:

Restrained Retaining Wall

DESCRIPTION: F15

Code Reference:
Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

Design Summary		
Total Bearing Load	$=$	$4,915.08 \mathrm{lbs}$
..resultant ecc.	$=$	0.0 in
Soil Pressure @ Toe	$=$	$1,404.31 \mathrm{psf}$ OK
Soil Pressure @ Heel	$=1,404.31 \mathrm{psf}$ OK	
Allowable	$=$	psf
Soil Pressure Less Than Allowable		
ACI Factored @ Toe	$=1,778.89 \mathrm{pss}$	
ACl Factored @ Heel	$=1,778.89 \mathrm{psf}$	
Footing Shear @ Toe	$=$	4.747 psi OK
Footing Shear @ Heel	$=$	2.347 psi OK
Allowable	$=$	75.0 psi
Reaction at Top	$=$	299.750 lbs
Reaction at Bottom	$=1,784.70 \mathrm{lbs}$	
Sliding Calcs		
Lateral Sliding Force	$=1,784.70 \mathrm{lbs}$	

Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing

Soil Data

Allow Soil BearingEquivalent Fluid Pressure Method			
At-Rest Heel Pressure	=	32.0 psf/ft	
	=	$0.0 \mathrm{psf} / \mathrm{ft}$	
Passive Pressure	=	250.0 psf/ft	
Soil Density	=	110 pcf	
Footing\|	Soil Frictior	=	0.4 psf
Soil height to ignore for passive pressure	=	12 in	

Uniform Lateral Load Applied to Stem		
Lateral Load	$=$	$\# / f t$
\ldots Height to Top	$=$	ft
\ldots Height to Bottom	$=$	ft
Load Type	$=$	Wind (W)
(Strength Level)		
Wind on Exposed Stem	$=$0.00 psf (Strength Level)	
Wind acts left-to-right toward retention side.		

K_{h} Soil Density Multiplier $=0.2 \mathrm{~g} \quad$ Added seismic per unit area $=0.0 \mathrm{psf}$

Concrete Stem Construction
Thickness $=\quad 8.00$ in
Wall Weight $=\quad 100.0$ psf
Stem is FIXED to top of footing

	@ Top Support	Mmax Between Top \& Base	@ Base of Wall
	Stem OK	Stem OK	Stem OK
Design Height Above Ftc	10.92 ft	0.04386 ft	0.00 ft
Rebar Size	\# 5	\# 5	\# 5
Rebar Spacing	16.00 in	16.00 in	16.00 in
Rebar Placed at	Edge	Edge	Edge
Rebar Depth 'd'	5.50 in	6.0 in	5.50 in
Design Data $\mathrm{fb} / \mathrm{FB}+\mathrm{fa} / \mathrm{Fa}$	$=$	0.657	0.720
Moment....Actual	$0.0 \mathrm{ft}-\mathrm{\#}$	3,934.77 ft-\#	3,934.77 ft-\#
Moment.....Allowable	5,467.34 ft-\#	$5,990.46 \mathrm{ft}-\mathrm{\#}$	5,467.34 ft-\#
Shear Force @ this height	$=481.199 \mathrm{lbs}$		2,208.40 lbs
Shear.....Actual	7.291 psi		33.461 psi
Shear.....Allowable	75.0 psi		75.0 psi

Load Factors	
\quad Building Code	
Dead Load	1.200
Live Load	1.600
Earth, H	1.600
Wind, Wy1/23/24	1.000
Seismic, E	1.000

Project Title:
Engineer:
Project ID:
Project Descr:

Restrained Retaining Wall

DESCRIPTION: F15

Footing Strengths \& Dimensions

Toe Width	$=.33333333 \mathrm{ft}$
Heel Width	= . 16666666
Total Footing Width	3.50
Footing Thickness	14.0 in
Key Width	in
Key Depth	in
Key Distance from Toe	ft
$\mathrm{f}^{\prime} \mathrm{c}=2,500.0 \mathrm{psi}$	$F y=60000 \mathrm{psi}$
Footing Concrete Density	$=150 \mathrm{pcf}$
Min. As \%	$=0.0018$
Cover @ Top = 2 in	@ Btm.= 3 in

Footing Design Results

	Toe	$\underline{\text { Heel }}$	
Factored Pressure	$=$	$1,778.89$	$1,778.89 \mathrm{psf}$
Mu' : Upward $^{\text {Mu' }}$ Downward	$=$	$1,581.23$	$\mathrm{ft}-\#$
Mu^{\prime}	421.333	$\mathrm{ft}-\#$	
Mu: Design	$=$	1,160	$-243 \mathrm{ft-} \mathrm{\#}$
Actual 1-Way Shear	$=$	4.747	psi
Allow 1-Way Shear	$=$	75.0	75.0 psi

Other Acceptable Sizes \& Spacings:	
Toe: \# 7 @ 18.00 in -or-	-or- phiMn $=$ phi * 5 * lambda * sqrt(fc) * Sm
Heel:None Spec'd -or-	-or- phiMn $=$ phi * 5 * lambda * sqrt(fc) * Sm
Key: \# 0 @ 0.00 in -or-	-or- No key defined
Min footing T\&S reinf Area	1.06 in2
Min footing T\&S reinf Area per foot	oot 0.30 in2 ft
If one layer of horizontal bars: If	If two layers of horizontal bars:
\#4@ 7.94 in	\#4@15.87 in
\#5@ 12.30 in	\#5@ 24.60 in
\#6@ 17.46 in	\#6@ 34.92 in

Summary of Forces on Footing: Slab RESISTS sliding, stem is FIXED at footing
Forces acting on footing for soil pressure
>>> Sliding Forces are restrained by the adjacent slab Load \& Moment Summary For Footing : For Soil Pressure Calcs

Moment @ Top of Footing Applied from Stem	$=$	$-2,459.23 \mathrm{ft}-\#$		
Surcharge Over Heel	$=$	0.0 lbs	0.0 ft	$0.0 \mathrm{ft}-\#$
Adjacent Footing Load	$=$	0.0 lbs	0.0 ft	$0.0 \mathrm{ft}-\#$
Axial Dead Load on Stem	$=$	$1,226.0 \mathrm{lbs}$	1.667 ft	$2,043.33 \mathrm{ft}-\#$
Soil Over Toe	$=$	293.333 lbs	0.6667 ft	$195.556 \mathrm{ft}-\#$
Surcharge Over Toe	$=$	0.0 lbs	0.0 ft	$0.0 \mathrm{ft-} \mathrm{\#}$
Stem Weight	$=$	$1,092.0 \mathrm{lbs}$	1.667 ft	$1,820.0 \mathrm{ft-} \mathrm{\#}$
Soil Over Heel	$=$	$1,691.25 \mathrm{lbs}$	2.750 ft	$4,650.94 \mathrm{ft-} \mathrm{\#}$
Footing Weight	$=$	612.50 lbs	1.750 ft	$1,071.88 \mathrm{ft}-\#$
Total Vertical Force	$=$	$4,915.08 \mathrm{lbs}$	Base Moment	$7,322.47 \mathrm{ft}-\#$

Stem is specified to be fixed to footing, and top restraint is assumed to react out any tendency for moment at the footing/soil interface, so uniform soil pressure is assumed.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Project Title:
Engineer:
Project ID:
Project Descr:

Restrained Retaining Wall

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.08.30 SNAKE RIVER ENGINEERING (c) ENERCALC INC 1983-2023
DESCRIPTION: F15

Lateral Restra $11 \mathrm{Lt}=406$, LL=820\#, Ecc=0"
299.75\#

DESCRIPTION: F4

Code Reference:
Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

Design Summary		
Total Bearing Load	$=$	$7,299.83 \mathrm{lbs}$
\ldots resultant ecc.	$=$	0.0 in
Soil Pressure @ Toe	$=$	$1,459.97 \mathrm{psf}$ OK
Soil Pressure @ Heel	$=$	$1,459.97 \mathrm{psf}$ OK
Allowable	$=$	psf
Soil Pressure Less Than Allowable		
ACI Factored @ Toe	$=$	$2,028.36 \mathrm{psf}$
ACl Factored @ Heel	$=$	$2,028.36 \mathrm{psf}$
Footing Shear @ Toe	$=$	38.551 psi OK
Footing Shear @ Heel	$=$	1.124 psi OK
Allowable	$=$	75.0 psi
Reaction at Top	$=$	299.750 lbs
Reaction at Bottom	$=1,784.70 \mathrm{lbs}$	
Sliding Calcs		
Lateral Sliding Force	$=1,784.70 \mathrm{lbs}$	

Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing

Soil Data

Allow Soil Bearing ${ }^{\text {Equivalent Fluid Pressure Method }} 10.500 .0 \mathrm{psf}$			
At-Rest Heel Pressure	=	$32.0 \mathrm{psf} / \mathrm{ft}$	
	=	$0.0 \mathrm{psf} / \mathrm{ft}$	
Passive Pressure	=	250.0 psf/ft	
Soil Density	=	110 pcf	
Footing\|	Soil Frictior	=	0.4 psf
Soil height to ignore for passive pressure	=	12 in	

Uniform Lateral Load Applied to Stem		
Lateral Load	$=$	$\# / \mathrm{ft}$
\ldots Height to Top	$=$	ft
\ldots Height to Bottom	$=$	ft
Load Type	$=$	Wind (W)
		(Strength Level)
Wind on Exposed Stem	0.00 psf	
		(Strength Level)
Wind acts left-to-right toward retention side.		

K_{h} Soil Density Multiplier $=0.2 \mathrm{~g} \quad$ Added seismic per unit area $=0.0 \mathrm{psf}$

Concrete Stem Construction
Thickness $=\quad 8.00 \mathrm{in}$
Wall Weight $=\quad 100.0 \mathrm{psf}$
Stem is FIXED to top of footing

| | | @ Top Support |
| :--- | :--- | :---: | :---: | :---: | | Mmax Between |
| :---: |
| Top \& Base |\quad @ Base of Wall

Load Factors	
\quad Building Code	
Dead Load	1.200
Live Load	1.600
Earth, H	1.600
Wind, Wy1/23/24	1.000
Seismic, E	1.000

Restrained Retaining Wall

DESCRIPTION: F4

Footing Strengths \& Dimensions

Footing Design Results

	Toe		$\underline{\text { Heel }}$
Factored Pressure	$=$	$2,028.36$	$2,028.36 \mathrm{psf}$
Mu' : Upward	$=$	$16,226.9$	$\mathrm{ft}-\#$
Mu' : Downward	$=$	$3,792.0$	$\mathrm{ft}-\#$
Mu: Design	$=$	12,435	$-26 \mathrm{ft}-\#$
Actual 1-Way Shear	$=$	38.551	psi
Allow 1-Way Shear	$=$	75.0	75.0 psi

Other Acceptable Sizes \& Spacings:	
Toe: \# 5 @ 8.00 in -or-	-or- \#4@ 6.63 in, \#5@ 10.27 in, \#6@ 14.59 in, \#7@ $19 .\{$
Heel: None Spec'd -or-	-or- phiMn = phi * 5 * lambda * sqrt(fc) * Sm
Key: \# 0 @ 0.00 in -or-	-or- No key defined
Min footing T\&S reinf Area	1.51 in2
Min footing T\&S reinf Area per foot	oot 0.30 in2 ft
If one layer of horizontal bars: If	If two layers of horizontal bars:
\#4@ 7.94 in	\#4@15.87 in
\#5@ 12.30 in	\#5@ 24.60 in
\#6@ 17.46 in	\#6@34.92 in

Summary of Forces on Footing: Slab RESISTS sliding, stem is FIXED at footing
Forces acting on footing for soil pressure
>>> Sliding Forces are restrained by the adjacent slab Load \& Moment Summary For Footing: For Soil Pressure Calcs

Moment @ Top of Footing Applied from Stem	$=$	$-2,459.23 \mathrm{ft}-\#$		
Surcharge Over Heel	$=$	0.0 lbs	0.0 ft	$0.0 \mathrm{ft}-\#$
Adjacent Footing Load	$=$	0.0 lbs	0.0 ft	$0.0 \mathrm{ft}-\#$
Axial Dead Load on Stem	$=$	$4,077.0 \mathrm{lbs}$	4.333 ft	$17,667.0 \mathrm{ft}-\#$
Soil Over Toe	$=$	880.0 lbs	2.0 ft	$1,760.0 \mathrm{ft}-\#$
Surcharge Over Toe	$=$	0.0 lbs	0.0 ft	$0.0 \mathrm{ft}-\#$
Stem Weight	$=$	$1,092.0 \mathrm{lbs}$	4.333 ft	$4,732.0 \mathrm{ft}-\#$
Soil Over Heel	$=$	375.833 lbs	4.833 ft	$1,816.53 \mathrm{ft}-\#$
Footing Weight	$=$	875.0 lbs	2.50 ft	$2,187.50 \mathrm{ft}-\#$
Total Vertical Force	$=$	$7,299.83 \mathrm{lbs}$	Base Moment	$25,703.8 \mathrm{ft}-\#$

Stem is specified to be fixed to footing, and top restraint is assumed to react out any tendency for moment at the footing/soil interface, so uniform soil pressure is assumed.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Project Title:
Engineer:
Project ID:
Project Descr:

Restrained Retaining Wall

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.08.30 SNAKE RIVER ENGINEERING (c) ENERCALC INC 1983-2023
DESCRIPTION: F4

DESCRIPTION: F16

Code Reference:
Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

Design Summary		
Total Bearing Load	$=$	$7,375.08 \mathrm{lbs}$
..resultant ecc.	$=$	0.0 in
Soil Pressure @ Toe	$=1,475.02 \mathrm{psf}$ OK	
Soil Pressure @ Heel	$=1,475.02 \mathrm{psf}$ OK	
Allowable	$=$	psf
Soil Pressure Less Than Allowable		
ACI Factored @ Toe	$=1,953.22 \mathrm{pss}$	
ACl Factored @ Heel	$=1,953.22 \mathrm{psf}$	
Footing Shear @ Toe	$=$	19.077 psi OK
Footing Shear @ Heel	$=$	5.184 psi OK
Allowable	$=$	75.0 psi
Reaction at Top	$=$	299.750 lbs
Reaction at Bottom	$=1,784.70 \mathrm{lbs}$	
Sliding Calcs		
Lateral Sliding Force	$=1,784.70 \mathrm{lbs}$	

Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing

Soil Data

Allow Soil Bearing ${ }^{\text {Equivalent Fluid Pressure Method }} 10.500 .0 \mathrm{psf}$			
At-Rest Heel Pressure	=	$32.0 \mathrm{psf} / \mathrm{ft}$	
	=	$0.0 \mathrm{psf} / \mathrm{ft}$	
Passive Pressure	=	250.0 psf/ft	
Soil Density	=	110 pcf	
Footing\|	Soil Frictior	=	0.4 psf
Soil height to ignore for passive pressure	=	12 in	

Uniform Lateral Load Applied to Stem		
Lateral Load	$=$	$\# / f t$
\ldots Height to Top	$=$	ft
\ldots Height to Bottom	$=$	ft
Load Type	$=$	Wind (W)
(Strength Level)		
Wind on Exposed Stem	$=$0.00 psf (Strength Level)	
Wind acts left-to-right toward retention side.		

K_{h} Soil Density Multiplier $=0.2 \mathrm{~g} \quad$ Added seismic per unit area $=0.0 \mathrm{psf}$

Concrete Stem Construction
Thickness $=\quad 8.00 \mathrm{in}$
Wall Weight $=\quad 100.0 \mathrm{psf}$
Stem is FIXED to top of footing

| | | @ Top Support |
| :--- | :--- | :---: | :---: | :---: | | Mmax Between |
| :---: |
| Top \& Base |\quad @ Base of Wall

Load Factors	
\quad Building Code	
Dead Load	1.200
Live Load	1.600
Earth, H	1.600
Wind, Wy1/23/24	1.000
Seismic, E	1.000

Project Title:
Engineer:
Project ID:
Project Descr:

Restrained Retaining Wall

DESCRIPTION: F16

Footing Strengths \& Dimensions

Footing Design Results

Other Acceptable Sizes \& Spacings:	
Toe: \# 5 @ 8.00 in -or-	-or- \#4@ 7.93 in, \#5@ 12.30 in, \#6@ 17.46 in, \#7@ 23. 亿
Heel:None Spec'd -or-	-or- phiMn = phi * 5 * lambda * sqrt(fc) * Sm
Key: \# 0 @ 0.00 in -or-	-or- No key defined
Min footing T\&S reinf Area	1.51 in2
Min footing T\&S reinf Area per foot	oot 0.30 in2 ft
If one layer of horizontal bars: If	If two layers of horizontal bars:
\#4@ 7.94 in	\#4@15.87 in
\#5@ 12.30 in	\#5@ 24.60 in
\#6@ 17.46 in	\#6@34.92 in

Summary of Forces on Footing: Slab RESISTS sliding, stem is FIXED at footing
Forces acting on footing for soil pressure
>>> Sliding Forces are restrained by the adjacent slab Load \& Moment Summary For Footing : For Soil Pressure Calcs

Moment @ Top of Footing Applied from Stem	$=$	$-2,459.23 \mathrm{ft}-\#$		
Surcharge Over Heel	$=$	0.0 lbs	0.0 ft	$0.0 \mathrm{ft}-\#$
Adjacent Footing Load	$=$	0.0 lbs	0.0 ft	$0.0 \mathrm{ft}-\#$
Axial Dead Load on Stem	$=$	$2,791.0 \mathrm{lbs}$	2.833 ft	$7,907.83 \mathrm{ft}-\#$
Soil Over Toe	$=$	550.0 lbs	1.250 ft	$687.50 \mathrm{ft}-\#$
Surcharge Over Toe	$=$	0.0 lbs	0.0 ft	$0.0 \mathrm{ft}-\#$
Stem Weight	$=$	$1,092.0 \mathrm{lbs}$	2.833 ft	$3,094.0 \mathrm{ft}-\#$
Soil Over Heel	$=$	$2,067.08 \mathrm{lbs}$	4.083 ft	$8,440.59 \mathrm{ft}-\#$
Footing Weight	$=$	875.0 lbs	2.50 ft	$2,187.50 \mathrm{ft}-\#$
Total Vertical Force	$=$	$7,375.08 \mathrm{lbs}$	Base Moment	$19,858.2 \mathrm{ft}-\#$

Stem is specified to be fixed to footing, and top restraint is assumed to react out any tendency for moment at the footing/soil interface, so uniform soil pressure is assumed.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Project Title:
Engineer:
Project ID:
Project Descr:

Restrained Retaining Wall

Project File: 05 Beams.ec6
LIC\# : KW-06013353, Build:20.23.08.30
SNAKE RIVER ENGINEERING
(c) ENERCALC INC 1983-2023

DESCRIPTION: F16

